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1 Homework 1 (Sep 8th)

Solution 1.1. We want to compute

C = AB =

n∑
i=1

A:,iBi,:,

that is, a sum of n rank-one outer products. The randomized estimator is constructed by sampling
indices im ∈ {1, . . . , n}, m = 1, . . . ,K, with probabilities {pi}, and defining

L(m) =
1√
Kpim

A:,im , R(m) =
1√
Kpim

Bim,:.

The approximation is

Ĉ =

K∑
m=1

L(m)R(m).

Taking expectation,

E[L(m)R(m)] =

n∑
i=1

pi ·
1

Kpi
A:,iBi,: =

1

K

n∑
i=1

A:,iBi,:.

Summing over m = 1, . . . ,K gives
E[Ĉ] = C,

so the estimator is unbiased.
The accuracy can be described in terms of the variance

E
[
∥Ĉ − C∥2F

]
= E

∥∥∥∥∥
K∑
m=1

L(m)R(m) − C

∥∥∥∥∥
2

F


=

1

K2

K∑
m=1

E

[∥∥∥∥L(m)R(m) − 1

K
C

∥∥∥∥2
F

]

=
1

K
E

[∥∥∥∥L(1)R(1) − 1

K
C

∥∥∥∥2
F

]
This shows that the estimator is unbiased and its variance decays as 1/K, so the accuracy improves
with more samples, and the bound highlights that the choice of sampling distribution {pi} is crucial:
selecting pi ∝ ∥A:,i∥∥Bi,:∥ minimizes the variance up to constants.

Solution 1.2. Let [0, 1] be partitioned uniformly with step h = 1/n and midpoints mi = (i − 1
2 )h.

On each cell Ii = [(i− 1)h, ih], Taylor expand f about mi:

f(x) = f(mi) + f ′(mi)(x−mi) +
1
2f

′′(ξi,x)(x−mi)
2, x ∈ Ii.

Integrate over Ii; the odd term vanishes:∫
Ii

f(x) dx = h f(mi) +
1
2

∫ h/2

−h/2
f ′′(ξi,mi+t) t

2 dt
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for some ξi ∈ Ii. Hence the midpoint rule

Qh := h

n∑
i=1

f(mi)

satisfies ∫ 1

0

f(x) dx−Qh =

n∑
i=1

1
2

∫ h/2

−h/2
f ′′(ξi,mi+t) t

2 dt.

If f ∈ C2[0, 1] and ∥f ′′∥∞ ≤M , then∣∣∣∣∫ 1

0

f −Qh
∣∣∣∣ ≤ n

2
M
h3

12
=
M

24
h2.

so the midpoint rule has global error O(h2) (second-order convergence).

102 103 104 105 106

N (number of samples)
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10 2
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so
lu

te
 e

rro
r

Monte Carlo integration of sin(x) on [0,1]
Fitted slope  -0.493 (expected -0.5)

mean |error|
N^{-1/2} reference

Solution 1.3.

2 Homework 2 (Sep 10th)

Solution 2.1. Let (An) be independent with
∑
n P(An) = ∞. For m ≥ 1, set Bm =

⋃
n≥mAn.

Then {An i.o.} =
⋂
m≥1Bm, so P(An i.o.) = limm→∞ P(Bm) = 1 − limm→∞ P(Bcm). Now Bcm =⋂

n≥mA
c
n and by independence

P

(
M⋂
n=m

Acn

)
=

M∏
n=m

(
1− P(An)

)
≤ exp

(
−

M∑
n=m

P(An)

)
−−−−→
M→∞

0,

since the series diverges. Hence P(Bcm) = 0 for each m, so the limit is 0 and P(An i.o.) = 1.

Solution 2.2. If X ∼ Pois(λ), Y ∼ Pois(µ) are independent, then for k ∈ Z≥0,

P(X + Y = k) =

k∑
i=0

P(X = i)P(Y = k − i) = e−(λ+µ)
k∑
i=0

λiµk−i

i!(k − i)!
= e−(λ+µ) (λ+ µ)k

k!
,

which is the pmf of Pois(λ+ µ).
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Solution 2.3. With X ∼ Pois(λ), Y ∼ Pois(µ) independent and N = X + Y fixed, for x =
0, 1, . . . , N ,

P(X = x | X+Y = N) =
P(X = x, Y = N − x)

P(X + Y = N)
=

(
e−λ λ

x

x!

)(
e−µ µN−x

(N−x)!
)

e−(λ+µ) (λ+µ)
N

N !

=

(
N

x

)(
λ

λ+ µ

)x(
µ

λ+ µ

)N−x

.

Hence X | (X + Y = N) ∼ Bin(N,λ/(λ+ µ)) (and symmetrically for Y ).

Solution 2.4. (1) Let X ∼ Exp(λ) with tail F̄ (x) = P(X > x) = e−λx for x ≥ 0. For s, t > 0,

P(X > s+ t | X > s) =
F̄ (s+ t)

F̄ (s)
=
e−λ(s+t)

e−λs
= e−λt = P(X > t).

This is the memoryless property.
(2) Assume P(X > s + t) = P(X > s)P(X > t) for all s, t > 0. Let ϕ(t) = P(X > t) for t ≥ 0.

Then ϕ(0) = 1, ϕ is nonincreasing and right–continuous, and

ϕ(s+ t) = ϕ(s)ϕ(t) (s, t ≥ 0).

Put g(t) = − log ϕ(t) (well-defined since ϕ(t) ∈ (0, 1]). Then g(0) = 0, g is measurable and g(s+t) =
g(s)+g(t), so by Cauchy’s functional equation in the measurable/monotone case, g(t) = λt for some
λ ≥ 0. Because ϕ(t) → 0 as t → ∞ for a proper r.v., we must have λ > 0. Hence ϕ(t) = e−λt and
therefore X ∼ Exp(λ).

Solution 2.5. Let (X1, . . . , Xn) be centered jointly Gaussian with covariance matrix Σ = (Σij).
The mgf of T =

∑n
i=1 tiXi is

MT (u) = EeuT = exp
(
1
2u

2 t⊤Σt
)
.

By multilinearity,

E(Xi1 · · ·Xik) =
∂k

∂ti1 · · · ∂tik
exp
(
1
2 t

⊤Σt
)∣∣∣∣
t=0

.

If k is odd, all derivatives vanish at t = 0 and the moment is 0. For even k = 2m, differentiating
the quadratic exponent generates a sum over all pairings π of {1, . . . , 2m}; each pairing contributes∏

(a,b)∈π Σab. Thus

E(X1 · · ·Xk) =


∑

pairings π

∏
(a,b)∈π

E(XaXb), k even,

0, k odd.

This is Wick’s (Isserlis’) theorem; e.g. for (X,Y, Z) one obtains the expansion illustrated in the
prompt by listing all pairings with their multiplicities.

Solution 2.6. Suppose (An) are mutually independent, P(∪n≥1An) = 1, and P(An) < 1 for each n.
Then by independence,

P

(
N⋂
n=1

Acn

)
=

N∏
n=1

(
1− P(An)

)
−−−−→
N→∞

0

because P(∩n≥1A
c
n) = 1− P(∪n≥1An) = 0. Fix m. For M ≥ m,

P

(
M⋂
n=m

Acn

)
=

∏M
n=1(1− P(An))∏m−1
n=1 (1− P(An))

−−−−→
M→∞

0,
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since the denominator is strictly positive by P(An) < 1. Hence P(∪n≥mAn) = 1 for every m, and
therefore

P(An i.o.) = P

 ⋂
m≥1

⋃
n≥m

An

 = 1.

Solution 2.7. We choose n = 200 as sample size, p1 = 0.01 for the approximation of Poisson
distribution, p2 = 0.5 for the approximation of Normal distribution.

0

0.05

0.1

0.15

0.2

0.25

0.3

P
(X

=
k
)

Binomial ! Poisson limit

0 2 4 6 8 10 12 14 16 18 20
k

Binomial(200; 0:01)

Poisson(6 = 2)

Binomial ! Normal limit

0 20 40 60 80 100 120 140 160 180 200
k

0

0.01

0.02

0.03

0.04

0.05

0.06

P
(X

=
k
)

Binomial(200; 0:5)

N(100; 50)

3 Homework 3 (Sep 15th)

Solution 3.1. A complete implementation is provided in the accompanying MATLAB code.
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0

0.01

0.02

0.03

0.04

0.05

0.06

P
(X

=
k
)

Poisson ! Normal limit

0 10 20 30 40 50 60 70 80 90 100
k

Poisson(6 = 50)

N(50; 50)

Solution 3.2. There are several intuitive methods to generate a random point uniformly on the
sphere surface S2. We describe two classical approaches:

Approach 1. Normalized Gaussian vectors.

1. Generate Z1, Z2, Z3 ∼ N (0, 1) independently.

2. Form the vector Z = (Z1, Z2, Z3).

3. Normalize: X = Z/∥Z∥.

Because the multivariate Gaussian distribution is rotationally invariant, the direction Z/∥Z∥ is
uniformly distributed on S2.

Approach 2. Direct spherical coordinates.

1. Generate ϕ ∼ Unif[0, 2π].

2. Generate u ∼ Unif[−1, 1] and set cos θ = u.

3. Convert to Cartesian coordinates:

x =
√
1− u2 cosϕ, y =

√
1− u2 sinϕ, z = u.

This uses the fact that the surface element on S2 is proportional to sin θ dθ dϕ, so cos θ is uniform
on [−1, 1].

Comparison. The Gaussian normalization method is very general and works in higher dimensions.
The spherical coordinate method is more geometric and provides intuition about the distribution of
latitude and longitude.

Solution 3.3. In Algorithm 2.6 we draw X from the density g(x) = f(x)/A by the inverse transform
X = F−1(AZ) (here A =

∫
f(x) dx and F is the primitive of f), then draw Y | X ∼ Unif[0, f(X)]

and accept iff Y < p(X).
Conditioning on X = x, the acceptance probability is

P(accept | X = x) =
p(x)

f(x)
(since Y ∼ Unif[0, f(x)]).

6



Hence the unconditional acceptance probability is

P(accept) = E
[
p(X)

f(X)

]
=

∫
p(x)

f(x)

f(x)

A
dx =

1

A

∫
p(x) dx.

If p is a normalized pdf,
∫
p(x) dx = 1 and thus P(accept) = 1/A. Therefore the rejection probability

of one trial is

P(reject) = 1−
∫
p(x) dx

A
= 1− 1

A
.

Solution 3.4. Correctness. Because gℓ(X) ≤ p(X), the rule above is equivalent to

accept ⇐⇒ U ≤ p(X)

Mgm(X)
.

Therefore

P(X ∈ dx, accept) = gm(x) dx · p(x)

Mgm(x)
=
p(x)

M
dx.

Let Zp :=
∫
p(x) dx. Then P(accept) =

∫
p(x)

M
dx =

Zp
M

and, conditioning on acceptance,

P(X ∈ dx | accept) = p(x)dx/M

Zp/M
=
p(x)

Zp
dx,

i.e., the accepted X has density proportional to p, hence exactly p when p is normalized.
Advantage over Algorithm 2.6. The overall acceptance probability remains Zp/M (the same

as the standard envelopeMgm). However, Step 2 provides a squeeze: whenever U ≤ gℓ(X)/(Mgm(X))
we accept without evaluating the potentially expensive p(x). Only in the remaining cases do we com-
pute p(x) to decide. Thus the algorithm:

• reduces the expected number of evaluations of p(·) per accepted sample;

• yields faster simulation when gℓ is easy to compute and is a good lower bound of p.

4 Homework 4 (Sep 22th)

Solution 4.1. Let X ∼ U [0, 1] and let f : [0, 1]→ R be monotone (hence measurable and integrable).
Note that 1−X ∼ U [0, 1] and E[f(1−X)] = E[f(X)]. Therefore

Cov(f(X), f(1−X)) = E[f(X)f(1−X)]−
(
E[f(X)]

)2
=

∫ 1

0

f(x)f(1− x) dx−
(∫ 1

0

f(x) dx
)2
.

Consider the double integral

I =

∫ 1

0

∫ 1

0

(
f(x)− f(u)

)(
f(1− x)− f(1− u)

)
du dx.

Expanding and integrating term-by-term gives

I = 2

∫ 1

0

f(x)f(1− x) dx− 2
(∫ 1

0

f(x) dx
)2
,

hence ∫ 1

0

f(x)f(1− x) dx−
(∫ 1

0

f(x) dx
)2

=
I

2
.
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If f is nondecreasing, then for any x, u ∈ [0, 1],

x ≥ u ⇒ f(x)− f(u) ≥ 0, 1− x ≤ 1− u ⇒ f(1− x)− f(1− u) ≤ 0,

so the product
(
f(x)−f(u)

)(
f(1−x)−f(1−u)

)
≤ 0. The same conclusion holds if f is nonincreasing

(the two factors switch signs). Therefore I ≤ 0 and thus

Cov(f(X), f(1−X)) =
I

2
≤ 0.

Solution 4.2. Let Y := f(X) and let G := σ(X(2)). Then E[Y | G ] is G –measurable and E
[
Y−E(Y |

G ) | G
]
= 0. Write the orthogonal decomposition

Y − EY =
(
Y − E(Y | G )

)
+
(
E(Y | G )− EY

)
.

Squaring and taking expectations gives

Var(Y ) = E
[
(Y − E(Y | G ))2

]
+ E

[
(E(Y | G )− EY )2

]
+ 2E[(Y − E(Y | G ))(E(Y | G )− EY )] .

The cross term is zero by conditional expectation:

E[(Y − E(Y | G ))(E(Y | G )− EY )] = E[E[Y − E(Y | G ) | G ] (E(Y | G )− EY )] = 0.

Hence

Var(Y ) = E
[
(Y − E(Y | G ))2

]
+ E

[
(E(Y | G )− EY )2

]
= E[Var(Y | G )] + Var(E(Y | G )) .

Restoring Y = f(X) and G = σ(X(2)) yields

Var(f(X)) = Var
(
E[f(X) | X(2)]

)
+ E
[
Var(f(X) | X(2))

]
,

which is the desired identity.

Solution 4.3. Let f, g be probability densities on a common space (X ,A , µ) with g > 0 a.e. and
set

D(f∥g) =

∫
X

f(x) log
f(x)

g(x)
dµ(x).

Write ϕ(t) = t log t, which is strictly convex on (0,∞). Then

D(f∥g) =
∫

X

g(x)ϕ

(
f(x)

g(x)

)
dµ(x).

By Jensen’s inequality applied to the probability measure g dµ and the convex function ϕ,∫
g ϕ

(
f

g

)
dµ ≥ ϕ

(∫
g · f

g
dµ

)
= ϕ

(∫
f dµ

)
= ϕ(1) = 0,

whence D(f∥g) ≥ 0.

Moreover, since ϕ is strictly convex, equality in Jensen holds iff f(x)
g(x) is constant g-a.e. Because∫

f dµ = 1 =
∫
g dµ, this constant must be 1, i.e., f(x) = g(x) g-a.e. (and hence µ-a.e.). Conversely,

if f = g a.e., then integrand is 0 a.e. and D(f∥g) = 0.
With the convention 0 log 0 = 0 (and taking f ≪ g so the ratio is well-defined g-a.e.), the result

follows.
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5 Homework 5 (Sep 24th)

Solution 5.1. Let (Xj)j≥1 be i.i.d. with Xj ∼ U [0, 1].

(i) Harmonic mean. We claim

1

n

n∑
j=1

1

Xj

a.s.−−−−→
n→∞

∞ =⇒ n

X−1
1 + · · ·+X−1

n

a.s.−−→ 0.

Define the truncations Y
(k)
j := min{X−1

j , k} for k ∈ N. For each fixed k, Y
(k)
j are i.i.d. with

EY (k)
1 =

∫ 1

0

min

(
1

x
, k

)
dx =

∫ 1/k

0

k dx+

∫ 1

1/k

1

x
dx = 1 + log k ↑ ∞ (k →∞).

By the strong law of large numbers (SLLN),

1

n

n∑
j=1

Y
(k)
j

a.s.−−→ EY (k)
1 = 1 + log k.

Fix M > 0. Choose k so large that 1 + log k > M . Then, almost surely, for all sufficiently large n,

1

n

n∑
j=1

1

Xj
≥ 1

n

n∑
j=1

Y
(k)
j > M/2.

Since M was arbitrary, 1
n

∑n
j=1X

−1
j →∞ a.s., hence

n

X−1
1 + · · ·+X−1

n

a.s.−−→ 0.

(ii) Geometric mean. Because E| logX1| =
∫ 1

0
| log x| dx = 1 <∞, the SLLN gives

1

n

n∑
j=1

logXj
a.s.−−→ E[logX1] =

∫ 1

0

log x dx = −1.

By continuity of the exponential,

n
√
X1X2 · · ·Xn = exp

 1

n

n∑
j=1

logXj

 a.s.−−→ e−1.

(iii) Quadratic mean. Since E[X2
1 ] =

∫ 1

0
x2 dx = 1

3 , the SLLN yields

1

n

n∑
j=1

X2
j

a.s.−−→ 1

3
.

Applying the continuous mapping theorem with the square root,√
X2

1 + · · ·+X2
n

n

a.s.−−→
√

1

3
=

1√
3
.

Combining the three parts,

lim
n→∞

n

X−1
1 + · · ·+X−1

n

= 0, lim
n→∞

n
√
X1 · · ·Xn = e−1, lim

n→∞

√
X2

1 + · · ·+X2
n

n
=

1√
3

a.s.
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Solution 5.2. Let X1, X2, . . . be i.i.d. random variables with E[Xi] = 0. Assume that

Zn =
X1 + · · ·+Xn√

n

d⇒ X, Z2n =
X1 + · · ·+X2n√

2n

d⇒ X

and denote the characteristic function of X by f(ξ) = E[eiξX ].

(a) Show that f(ξ) = f2(ξ/
√
2).

Let

S(1)
n =

n∑
j=1

Xj , S(2)
n =

2n∑
j=n+1

Xj .

Then S
(1)
n and S

(2)
n are independent and have the same distribution as Sn. We can write

Z2n =
S
(1)
n + S

(2)
n√

2n
=

1√
2

(S(1)
n√
n

+
S
(2)
n√
n

)
=

1√
2

(
Z(1)
n + Z(2)

n

)
,

where Z
(1)
n , Z

(2)
n are i.i.d. copies of Zn.

Let φn be the characteristic function of Zn. Then

φ2n(ξ) =
(
φn(ξ/

√
2)
)2
.

By Lévy’s continuity theorem, φn(ξ)→ f(ξ) and φ2n(ξ)→ f(ξ), hence

f(ξ) = f2(ξ/
√
2).

(b) If f ∈ C2(R), then f is Gaussian.
Let ϕ(ξ) = log f(ξ) (the continuous branch near 0, noting f(0) = 1). From (a),

ϕ(ξ) = 2ϕ(ξ/
√
2).

Define h(ξ) = ϕ(ξ)/ξ2 for ξ ̸= 0. Then

h(ξ) = h(ξ/
√
2) ⇒ h(ξ) = lim

k→∞
h(ξ/2k/2) = h(0).

Since f ∈ C2, ϕ′′(0) = f ′′(0)− [f ′(0)]2 exists, and ϕ(0) = ϕ′(0) = 0, so h(0) = 1
2ϕ

′′(0) = − 1
2σ

2 for
some σ2 ≥ 0. Hence

ϕ(ξ) = −1
2σ

2ξ2, f(ξ) = e−
1
2σ

2ξ2 ,

which is the characteristic function of N(0, σ2).

(c) Replace 1/
√
n by 1/n.

Now

Z̃n =
X1 + · · ·+Xn

n

d⇒ X, Z̃2n
d⇒ X.

Analogously,
f(ξ) = f2(ξ/2).

Let ϕ = log f . Then ϕ(ξ) = 2ϕ(ξ/2). If f is even (symmetric) or constant, define h(ξ) = ϕ(ξ)/|ξ|.
Then h(ξ) = h(ξ/2)⇒ h(ξ) = h(0) = −γ with γ ≥ 0. Thus

f(ξ) = e−γ|ξ|,

which is the characteristic function of a (centered) Cauchy–Lorentz distribution (or degenerate at 0
if γ = 0).
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(d) Replace 1/
√
n by 1/nα.

The same reasoning gives

f(ξ) = f2(ξ/2α), ϕ(ξ) = 2ϕ(ξ/2α).

Assume ϕ(ξ) = −c|ξ|p for some c > 0. Then

−c|ξ|p = 2
(
− c|ξ|p/2αp

)
⇒ 21−αp = 1 ⇒ p =

1

α
.

Hence
f(ξ) = exp(−c|ξ|1/α),

the characteristic function of a symmetric α-stable law.
For exp(−c|ξ|p) to be a characteristic function, 0 < p ≤ 2. Therefore

α ≥ 1
2 ,

where α = 1
2 gives the Gaussian, α = 1 gives the Cauchy case, and larger α yield heavier-tailed

stable distributions.

Remark 5.1. Solve function equations.

Solution 5.3. This example shows that the law of large numbers fails when its assumptions are not
satisfied. Let {Xj}∞j=1 be i.i.d. random variables following the Cauchy distribution with probability
density function

f(x) =
1

π(1 + x2)
, x ∈ R.

We check three key properties.

(1) Expectation. Although the Cauchy distribution is symmetric about 0, the mean E[Xj ] does not
exist. Indeed, the integral∫

R
|x|f(x) dx =

2

π

∫ ∞

0

x

1 + x2
dx =

1

π

[
log(1 + x2)

]∞
0

=∞.

Hence E|Xj | =∞, and E[Xj ] is undefined (it is not absolutely integrable).

(2) Divergent moments. Similarly,

E[X2
j ] =

∫
R

x2

π(1 + x2)
dx =∞,

so the variance does not exist either.

(3) Distribution of the sample mean. Let Sn = X1 + · · ·+Xn. The characteristic function of
X1 is

ϕ(t) = E[eitX1 ] = e−|t|, t ∈ R.
By independence,

ϕSn/n(t) = E[eitSn/n] =

n∏
j=1

E[eitXj/n] =
(
ϕ(t/n)

)n
=
(
e−|t|/n)n = e−|t|.

Thus, ϕSn/n(t) = ϕ(t), meaning
Sn
n

d
= X1 for all n.

Hence the distribution of the sample mean is the same as that of each Xj, and the sequence {Sn/n}
does not converge to a constant. Both the weak and strong laws of large numbers therefore fail.

11



Solution 5.4. Let ψ(x) := h(0) − h(x) ≥ 0. Then ψ(0) = 0, ψ(x) > 0 for x > 0, ψ′(x) = −h′(x)
on (0,∞), and ψ′(0) = −h′(0) =: a > 0. Write

I(t) :=

∫ ∞

0

eth(x) dx = eth(0)
∫ ∞

0

e−tψ(x) dx.

Fix ε ∈ (0, a/2). By continuity of ψ′ at 0, there exists δ > 0 such that

a− ε ≤ ψ′(x) ≤ a+ ε (0 ≤ x ≤ δ). (1)

Split the integral:∫ ∞

0

e−tψ(x) dx =

∫ δ

0

e−tψ(x) dx+

∫ ∞

δ

e−tψ(x) dx =: I1(t) + I2(t).

Tail estimate Since ψ is increasing and ψ(δ) > 0,

0 ≤ I2(t) ≤= e−(t−1)ψ(δ)

∫ ∞

δ

e−ψ(x) dx ≤ C e−ct

for some C, c > 0.

Main part On [0, δ] the function ψ is strictly increasing, hence a C1 bijection onto [0, ψ(δ)]. Make
the change of variables

y = t ψ(x), x = xt(y) := ψ−1(y/t),

to get

I1(t) =
1

t

∫ tψ(δ)

0

e−y
1

ψ′(xt(y))
dy.

By (1),
1

a+ ε
≤ 1

ψ′(xt(y))
≤ 1

a− ε
(0 ≤ y ≤ tψ(δ)).

Moreover, xt(y) = ψ−1(y/t) → 0 for each fixed y as t → ∞, so 1
ψ′(xt(y))

→ 1
a . By the dominated

convergence theorem,

lim
t→∞

t I1(t) =

∫ ∞

0

e−y
1

a
dy =

1

a
.

Combining with the tail estimate, ∫ ∞

0

e−tψ(x) dx =
1

t

1

a
+ o

(
1

t

)
.

Therefore

I(t) = eth(0)
(

1

at
+ o

(
1

t

))
=

eth(0)

−t h′(0)
(1 + o(1)),

which proves the claimed asymptotic.

Remark 5.2. Use the change of variables.

Solution 5.5. Recall that for a random variable X with moment generating function

M(λ) = E[eλX ], Λ(λ) = logM(λ),
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the rate function (Legendre–Fenchel transform) is defined as

I(x) = sup
λ∈R
{λx− Λ(λ)}.

(1) Normal distribution X ∼ N(µ, σ2).

M(λ) = exp
(
µλ+ 1

2σ
2λ2
)
, Λ(λ) = µλ+ 1

2σ
2λ2.

Thus
I(x) = sup

λ∈R

{
λ(x− µ)− 1

2σ
2λ2
}
.

Maximizing in λ gives λ∗ = (x− µ)/σ2, and

I(x) =
(x− µ)2

2σ2
, x ∈ R.

(2) Exponential distribution X ∼ Exp(λ) with pdf f(x) = λe−λx for x ≥ 0.

M(θ) = E[eθX ] =
λ

λ− θ
, θ < λ, Λ(θ) = − log

(
1− θ

λ

)
.

Then

I(x) = sup
θ<λ

{
θx+ log

(
1− θ

λ

)}
.

Setting the derivative to zero gives

x− Λ′(θ) = 0 =⇒ Λ′(θ) =
1

λ− θ
= x,

so θ∗ = λ− 1
x (valid only for x > 0). Then

1− θ∗

λ
=

1

λx
, Λ(θ∗) = log(λx).

Therefore
I(x) = θ∗x− Λ(θ∗) = (λx− 1)− log(λx), x > 0.

Since the exponential distribution is supported on [0,∞),

I(x) =

λx− 1− log(λx), x > 0,

+∞, x ≤ 0.

Note that I(x) attains its minimum 0 at x = 1/λ, the mean of the exponential distribution.

6 Homework 6 (Sep 29th)

Solution 6.1. Ehrenfest’s model. Consider the classical Ehrenfest urn model with N identical
particles (or balls) distributed between two boxes (labeled A and B). At each discrete time step, one
of the N particles is chosen uniformly at random and moved to the other box.
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Let Xt denote the number of particles in box A at time t. Then {Xt}t≥0 is a Markov chain with
state space {0, 1, 2, . . . , N} and transition probabilities

P (i, i+ 1) =
N − i
N

, P (i, i− 1) =
i

N
, i = 0, 1, . . . , N.

These correspond respectively to moving a ball from B to A and from A to B.

Invariant (stationary) distribution. We seek π = (π0, π1, . . . , πN ) such that πP = π. The
detailed balance equations (reversibility) are

πi P (i, i+ 1) = πi+1 P (i+ 1, i),

which gives

πi+1 = πi
P (i, i+ 1)

P (i+ 1, i)
= πi

N − i
i+ 1

.

Iterating from i = 0 yields

πi = π0
N !

i! (N − i)!
= π0

(
N

i

)
.

Normalizing so that
∑N
i=0 πi = 1 gives

πi = 2−N
(
N

i

)
, i = 0, 1, . . . , N.

Interpretation. The invariant distribution is the binomial distribution Bin(N, 1/2). Intuitively, in
equilibrium, each particle independently occupies either box A or B with equal probability 1/2. Thus

the probability of having i particles in box A is πi =

(
N

i

)
2−N .

Solution 6.2. Let {N(t)}t≥0 be a (simple) Poisson process with rate λ > 0, characterized by

(i) N(0) = 0, (ii) stationary independent increments,

(iii) P{N(h) = 1} = λh+ o(h), P{N(h) ≥ 2} = o(h) (h ↓ 0).

For fixed t > 0 define the characteristic function of N(t):

ϕt(u) := E
[
eiuN(t)

]
, u ∈ R.

Using independent, stationary increments and the small–time behavior (iii), for h > 0 small we
write, conditioning on the increment N(t+ h)−N(t),

ϕt+h(u) = E
[
eiuN(t)E

(
eiu(N(t+h)−N(t)) | N(t)

)]
= ϕt(u)E

(
eiuN(h)

)
.

By (iii),

E
(
eiuN(h)

)
= 1 · P{N(h) = 0}+ eiuP{N(h) = 1}+ E

(
eiuN(h);N(h) ≥ 2

)
= 1+ λh (eiu − 1) + o(h).

Hence
ϕt+h(u)− ϕt(u) = ϕt(u)

(
λh (eiu − 1) + o(h)

)
,

so, dividing by h and letting h ↓ 0,

d

dt
ϕt(u) = λ (eiu − 1)ϕt(u), ϕ0(u) = 1.
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Solving this linear ODE gives

ϕt(u) = exp
{
λt (eiu − 1)

}
.

To extract the distribution of N(t), expand:

ϕt(u) = e−λt exp
(
λt eiu

)
= e−λt

∞∑
n=0

(λt)n

n!
eiun.

Comparing with the general form ϕt(u) =
∑
n≥0 e

iunP{N(t) = n}, we read off

P{N(t) = n} = e−λt
(λt)n

n!
, n = 0, 1, 2, . . . .

Thus N(t) ∼ Poisson(λt).

Solution 6.3. Let X(t) be a CTMC on a countable state space S with generator Q = (qij), where
qij ≥ 0 for j ̸= i and qii = −

∑
j ̸=i qij =: −qi. For a bounded (or suitable) function f : S → R define

hi(t) := Ei[f(X(t))], i ∈ S, t ≥ 0.

Equivalently, letting (Pt)t≥0 be the transition semigroup, h(t) = Ptf .
Fix i and condition on what happens in the first small interval [0, dt]: with probability 1− qi dt+

o(dt) the chain stays in i; with probability qij dt+o(dt) it jumps to j ̸= i. Using the Markov property
at time dt,

hi(t+ dt) = Ei[f(X(t+ dt))] =
(
1− qi dt

)
Ei[f(X(t))] +

∑
j ̸=i

qij dtEj [f(X(t))] + o(dt)

=
(
1− qi dt

)
hi(t) +

∑
j ̸=i

qij dt hj(t) + o(dt).

Hence
hi(t+ dt)− hi(t)

dt
=
∑
j ̸=i

qij
(
hj(t)− hi(t)

)
+ o(1) =

∑
j∈S

qij hj(t) + o(1),

because qii = −
∑
j ̸=i qij. Letting dt ↓ 0 we obtain the backward Kolmogorov equation

d

dt
hi(t) =

∑
j∈S

qij hj(t), hi(0) = f(i).

In vector form, with h(t) = (hi(t))i∈S and f = (f(i))i∈S,

d

dt
h(t) = Qh(t), h(0) = f.

Solution 6.4. Let each trial (coin toss) occur every τ units of time with success probability p. Let
N(t) be the number of successes by time t. Then

N(t) ∼ Binomial

(
n =

t

τ
, p

)
, P{N(t) = k} =

(
t/τ

k

)
pk(1− p)t/τ−k.

Now take the limit p→ 0, τ → 0 with
p

τ
→ λ > 0. Let n = t/τ →∞, so np = λt. Then(

n

k

)
pk(1− p)n−k ≈ (np)k

k!
e−np = e−λt

(λt)k

k!
.
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Hence

P{N(t) = k} → e−λt
(λt)k

k!
, k = 0, 1, 2, . . .

which is the Poisson(λt) law.

Conclusion: Under p, τ → 0 with p/τ → λ, the binomial counting process converges to a Poisson
process with rate λ.

Solution 6.5. Let {N(t)}t≥0 be a (nonhomogeneous) Poisson process with time–varying rate λ(t) >
0 in the sense that for h ↓ 0,

P{N(t+ h)−N(t) = 1} = λ(t)h+ o(h), P{N(t+ h)−N(t) ≥ 2} = o(h),

and the increments over disjoint intervals are independent.

State probabilities. Let pm(t) := P{N(t) = m} and set the cumulative rate Λ(t) :=

∫ t

0

λ(u) du.

The forward equations are

p′m(t) = −λ(t) pm(t) + λ(t) pm−1(t), pm(0) = 1{m=0}.

Solving (e.g. by induction or generating functions) yields the Poisson law with mean Λ(t):

pm(t) = e−Λ(t)Λ(t)
m

m!
, m = 0, 1, 2, . . .

7 Homework 7 (Oct 27th)

Solution 7.1. Estimate R = Eπb
[w(X)] with w(x) = exp(x2(1/b−1/a)), πb(x) ∝ e−x

2/b1[L,U ](x),
[L,U ] = [−10, 10].

Algorithm 1 Metropolis–Hastings targeting πb with uniform independence proposal

Require: a > 0, b > 0, total steps N ; L← −10, U ← 10
1: draw x0 ∼ Unif[L,U ]
2: for t = 1 ... N do
3: propose x′ ∼ Unif[L,U ] ▷ q(x′|x) = Unif[L,U ]
4: α← min

(
1, exp

(
− (x′2 − x2t−1)/b

))
5: draw u ∼ Unif(0, 1); xt ←

{
x′, u < α

xt−1, else

6: Output: R̂ =
1

N

N∑
t=1

exp
(
x2t (1/b− 1/a)

)

Choose sample size N = 200000, and the results are as follows.
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Solution 7.2. Check the detailed balance condition for Metropolis and Glauber dynamics.

For Gibbs distribution π(σ) = Z−1e−βH(σ), with symmetric proposal Q(σ → σ′), the detailed balance
condition requires

π(σ)P (σ → σ′) = π(σ′)P (σ′ → σ).

(1) Metropolis: AM (σ → σ′) = min{1, e−β∆H}, where ∆H = H(σ′)−H(σ). Then

AM (σ → σ′)

AM (σ′ → σ)
= e−β∆H =

π(σ′)

π(σ)
,

so detailed balance holds.
(2) Glauber: AG(σ → σ′) = (1 + eβ∆H)−1. Similarly,

AG(σ → σ′)

AG(σ′ → σ)
= e−β∆H =

π(σ′)

π(σ)
,

thus Glauber dynamics also satisfies detailed balance.

Solution 7.3. Check that the Markov chains set up by Metropolis and Glauber dynamics for the
Ising model are both primitive.

In the single–spin–flip scheme, any configuration σ can reach any σ′ by flipping spins one by one
(finite number of steps). Each transition has strictly positive probability:

Q(σ → σ′) > 0, AM > 0, AG ∈ (0, 1),

hence P τ (σ, σ′) > 0 for some finite τ . Therefore, both Metropolis and Glauber dynamics define
primitive Markov chains.

8 Homework 8 (Nov 17th)

Solution 8.1. The state space is S = X ×{1, . . . , L}. For s = (x, i) and s′ = (y, j), the transition
kernel is

P
(
(x, i), (y, j)

)
= α0 1{j=i} Ti(x, y) + (1− α0)1{y=x}

[
α(i, j)aij(x)1{j ̸=i} + ri(x)1{j=i}

]
,

where Ti is the MCMC transition at level i,

aij(x) = min

{
1,

πst(x, j)α(j, i)

πst(x, i)α(i, j)

}
,

and the remaining–stay probability is

ri(x) = 1−
∑
k ̸=i

α(i, k)aik(x).

Solution 8.2. The state space is S = X L. For x = (x1, . . . , xL) and y = (y1, . . . , yL),

P (x, y) = α0

L∏
ℓ=1

Tℓ(xℓ, yℓ) + (1− α0)
1

L− 1

L−1∑
i=1

[
ai(x)1{y=x(i↔i+1)} + (1− ai(x))1{y=x}

]
,

where Tℓ is the MCMC kernel at temperature level ℓ,

ai(x) = min

{
1,

πi(xi+1)πi+1(xi)

πi(xi)πi+1(xi+1)

}
,

and x(i↔i+1) denotes the vector obtained by swapping the ith and (i+ 1)th coordinates of x.
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9 Homework 9 (Nov 17th)

Solution 9.1. As β →∞, the Boltzmann distribution

πβ(x) ∝ e−βV (x)

concentrates on the set of global minimizers of V .
If V has finitely many isolated minimizers {x1, . . . , xm}, then

πβ =⇒ 1

m

m∑
k=1

δxk
,

i.e. the limiting distribution is the uniform distribution over all global minimizers.

10 Homework 10 (Nov 17th)

Solution 10.1. Let

W (x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
.

Direct differentiation gives

∂W

∂t
=

(
x2

4D2t2
− 1

2Dt

)
DW,

∂2W

∂x2
=

(
x2

4D2t2
− 1

2Dt

)
W.

Thus ∂tW = D∂2xW . As t→ 0, W (x, t)→ δ(x) in distribution.

Solution 10.2. The reflecting-barrier solution is

Wr(x, t;x1) =
1√
4πDt

[
e−x

2/(4Dt) + e−(2x1−x)2/(4Dt)
]
.

Each term solves ∂tW = D∂2xW , hence the sum does too. Initial condition: Wr(x, 0) = δ(x).
Neumann boundary:

∂xWr(x1, t) = 0

because the two exponentials have opposite derivatives at x = x1.

Solution 10.3. The absorbing-barrier solution is

Wa(x, t;x1) =
1√
4πDt

[
e−x

2/(4Dt) − e−(2x1−x)2/(4Dt)
]
.

It satisfies ∂tWa = D∂2xWa since each term does. Initial condition: Wa(x, 0) = δ(x). Dirichlet
boundary:

Wa(x1, t) = 0

because the two terms cancel at x = x1.

11 Homework 11 (Nov 17th)

Solution 11.1. We have E[ξ1] = 2
3 −

1
3 = 1

3 ̸= 0, hence

E[S⌊Nt⌋] =
1
3Nt.
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Thus

ZNt =
S⌊Nt⌋

Nα

has mean
E[ZNt ] = 1

3 tN
1−α.

To obtain a finite nontrivial limit we must have 1− α = 0, i.e. α = 1. Moreover,

ZNt =
1

N

(
1
3Nt+O(

√
N)
)
→ 1

3 t.

Hence the limit process is Zt =
1
3 t.

Solution 11.2. (a) Since Wt ∼ N(0, t), we can write Wt
d
=
√
tW1 with W1 ∼ N(0, 1). Hence

EW 4
t = t2EW 4

1 = t2 · 3 = 3t2.

(b) Let X = Wt −Ws +Wz. Then EX2 = Var(X) and, for a Wiener process, Cov(Wu,Wv) =
min(u, v). Thus

E(Wt −Ws +Wz)
2 = Var(X) = t+ s+ z + 2

[
−min(t, s) + min(t, z)−min(s, z)

]
.

Solution 11.3. Since X ∼ N(0, A), its density is

fX(x) =
1

(2π)n/2 det(A)1/2
exp

(
−1

2
xTA−1x

)
.

Then

E exp
(
− 1

2X
TBX

)
=

1

(2π)n/2 det(A)1/2

∫
Rn

exp

(
−1

2
xT(A−1 +B)x

)
dx.

Using the Gaussian integral
∫
Rn e

− 1
2x

TMxdx = (2π)n/2 det(M)−1/2 for M ≻ 0, we get

Ee−
1
2X

TBX = det(A)−1/2 det(A−1 +B)−1/2.

Since det(A−1 +B) = det(A−1) det(I +AB), this simplifies to

Ee−
1
2X

TBX = det(I +AB)−1/2 .

Solution 11.4. We show that (1)–(3) are equivalent to (1’)–(3’).

(1)–(3) ⇒ (1’)–(3’). Assume (Wt)t≥0 is a Gaussian process with EWt = 0 and Cov(Ws,Wt) =
s ∧ t.

(2’) For any s, t ≥ 0, the increment Ws+t −Ws is Gaussian (since the process is Gaussian) with
mean

E(Ws+t −Ws) = 0,

and variance

Var(Ws+t −Ws) = Var(Ws+t) + Var(Ws)− 2Cov(Ws+t,Ws) = (s+ t) + s− 2s = t.

Hence Ws+t −Ws ∼ N(0, t).
(1’) Let t0 < t1 < · · · < tn and set X0 = Wt0 , Xk = Wtk −Wtk−1

for k ≥ 1. For i ̸= j one
checks, using Cov(Ws,Wt) = s ∧ t, that Cov(Xi, Xj) = 0 (a simple computation with s ∧ t). Since
the vector (X0, . . . , Xn) is Gaussian and its covariance matrix is diagonal, the Xi are independent.
Thus (1’) holds. Condition (3’) is identical to (3).
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(1’)–(3’) ⇒ (1)–(3). Assume now (1’)–(3’).
From (2’) with s = 0 we get Wt ∼ N(0, t), so EWt = 0 and Var(Wt) = t. By (1’) the increments

Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1
are independent and by (2’) each increment is Gaussian. Hence

any finite vector (Wt1 , . . . ,Wtn) is a linear combination of independent Gaussian random variables,
so it is multivariate Gaussian. Thus (Wt) is a Gaussian process.

To compute the covariance, let 0 ≤ s ≤ t. Write Wt =Ws + (Wt −Ws). Then

Cov(Ws,Wt) = Cov(Ws,Ws) + Cov
(
Ws,Wt −Ws

)
.

By (1’) the increment Wt −Ws is independent of Ws, so the second covariance is 0, hence

Cov(Ws,Wt) = Var(Ws) = s.

For t < s the same argument gives Cov(Ws,Wt) = t, so Cov(Ws,Wt) = s ∧ t. Finally, (3) is the
same as (3’). Thus (1)–(3) hold.

12 Homework 12 (Dec 1st)

Solution 12.1. Let (Wt)t≥0 be a Wiener process.

(i) Yt =
1√
c
Wct. For 0 ≤ s < t,

Yt − Ys =
1√
c
(Wct −Wcs) ∼ N (0, t− s),

and the increments are independent by those of W . Continuity follows from that of W . Hence Y is
a Wiener process.

(ii) Zt =W (T )−W (T − t). For 0 ≤ s < t ≤ T ,

Zt − Zs =W (T − s)−W (T − t) ∼ N (0, t− s),

with independent increments since they correspond to disjoint time intervals of W . Continuity is
inherited from W , so Z is a Wiener process.

(iii) Xt = tW1/t, X0 = 0. For s, t ∈ (0, 1],

Cov(Xs, Xt) = stCov(W1/s,W1/t) = stmin

{
1

s
,
1

t

}
= min{s, t}.

Thus (Xt) is a centered Gaussian process with covariance Cov(Xs, Xt) = min{s, t}, the same as
Brownian motion. Hence X has the same finite-dimensional distributions as (Wt) and, with X0 = 0,
is a Wiener process.

Solution 12.2. Let W be Brownian motion and let ∆ = {0 = t0 < · · · < tm = t} be a partition.
Define

Q∆
t :=

m−1∑
k=0

(
Wtk+1

−Wtk

)2
.

Write ∆Wk :=Wtk+1
−Wtk and ∆tk := tk+1 − tk. Then the increments ∆Wk are independent and

∆Wk ∼ N (0,∆tk).

Proposition 2.2. We have E[∆W 2
k ] = ∆tk, hence

E[Q∆
t ] =

m−1∑
k=0

∆tk = t.
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Moreover,

Q∆
t − t =

m−1∑
k=0

(
∆W 2

k −∆tk
)
,

and the summands are independent with mean 0, so

E(Q∆
t − t)2 =

m−1∑
k=0

Var(∆W 2
k ).

If X ∼ N (0, σ2) then E[X4] = 3σ4, so Var(X2) = 3σ4 − σ4 = 2σ4. With σ2 = ∆tk this gives
Var(∆W 2

k ) = 2(∆tk)
2, hence

E(Q∆
t − t)2 = 2

m−1∑
k=0

(∆tk)
2.

In particular, since
∑

(∆tk)
2 ≤ |∆|

∑
∆tk = |∆| t, we get E(Q∆

t − t)2 ≤ 2t|∆| → 0 as |∆| → 0, i.e.
Q∆
t → t in L2.

HW2 sharpening (dyadic partition). Fix t > 0 and set tk = k2−nt for k = 0, 1, . . . , 2n. Define

Yn(t) :=

2n−1∑
k=0

(
Wtk+1

−Wtk

)2
.

Applying Proposition 2.2,

Var(Yn(t)) = E(Yn(t)− t)2 = 2

2n−1∑
k=0

(
t

2n

)2

=
2t2

2n
.

By Chebyshev, for any ε > 0,

P
(
|Yn(t)− t| > ε

)
≤ Var(Yn(t))

ε2
=

2t2

ε2 2n
.

Since
∑∞
n=1 2

−n <∞, Borel–Cantelli implies

P
(
|Yn(t)− t| > ε i.o.

)
= 0 for every ε > 0.

Hence |Yn(t)− t| → 0 almost surely, i.e. Yn(t, ω)→ t a.s.

Solution 12.3. Let C[0,∞) be the space of real-valued continuous functions on [0,∞). For x, y ∈
C[0,∞) define

d(x, y) :=

∞∑
n=1

2−n
(
∥x− y∥∞,[0,n] ∧ 1

)
, ∥f∥∞,[0,n] := sup

t∈[0,n]

|f(t)|.

(A) Completeness. Let (xk) be a d-Cauchy sequence in C[0,∞). Fix m ∈ N. We claim that (xk)
is Cauchy in the uniform norm on [0,m].

Indeed, for any ε ∈ (0, 1) choose K such that for all k, ℓ ≥ K, d(xk, xℓ) < 2−mε. Then

2−m
(
∥xk − xℓ∥∞,[0,m] ∧ 1

)
≤ d(xk, xℓ) < 2−mε,

hence (∥xk − xℓ∥∞,[0,m] ∧ 1) < ε. Since ε < 1, this implies

∥xk − xℓ∥∞,[0,m] < ε,
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so (xk) is Cauchy in (C[0,m], ∥ · ∥∞,[0,m]). Because (C[0,m], ∥ · ∥∞) is complete, there exists a

continuous function x(m) ∈ C[0,m] such that

∥xk − x(m)∥∞,[0,m] → 0 as k →∞.

Compatibility. If m < r, then on [0,m] we have both xk → x(m) uniformly and xk → x(r) uni-
formly, hence x(r) = x(m) on [0,m] by uniqueness of uniform limits. Therefore the family {x(m)} is
consistent.

Define x : [0,∞) → R by setting x(t) := x(m)(t) for any m > t. This is well-defined by
compatibility, and x is continuous on each [0,m], hence continuous on [0,∞), i.e. x ∈ C[0,∞).

Convergence in d. Fix ε > 0. Choose M so that
∑
n>M 2−n < ε/2. For each 1 ≤ n ≤ M , since

∥xk − x∥∞,[0,n] → 0, choose K such that for all k ≥ K,

∥xk − x∥∞,[0,n] <
ε

2
for all 1 ≤ n ≤M.

Then for k ≥ K,

d(xk, x) =

∞∑
n=1

2−n
(
∥xk − x∥∞,[0,n] ∧ 1

)
≤

M∑
n=1

2−n∥xk − x∥∞,[0,n] +
∑
n>M

2−n ≤ ε

2

M∑
n=1

2−n +
ε

2
< ε.

Hence xk → x in (C[0,∞), d), so the space is complete.

(B) Separability. Let D be the set of functions f ∈ C[0,∞) such that: for some N ∈ N,

• f is piecewise linear on each interval [j, j + 1] for j = 0, 1, . . . , N − 1, with breakpoints at
rational points in [0, N ] and values in Q;

• f(t) = 0 for all t ≥ N .

Then D is countable: it is a countable union over N of functions determined by finitely many rational
breakpoints and finitely many rational values.

We show D is dense in (C[0,∞), d). Let x ∈ C[0,∞) and ε > 0. Choose M such that∑
n>M 2−n < ε/2. On [0,M ], by uniform continuity of x on the compact interval [0,M ], there

exists a partition 0 = s0 < · · · < sL =M fine enough so that the piecewise linear interpolation f̃ of
x on this partition satisfies

∥x− f̃∥∞,[0,M ] < δ,

where δ > 0 will be chosen. Approximating the finitely many breakpoints si by rationals and the
finitely many values x(si) by rationals, we obtain a piecewise linear f ∈ D (also set f(t) = 0 for
t ≥M) such that

∥x− f∥∞,[0,M ] < δ.

Then for 1 ≤ n ≤M , ∥x− f∥∞,[0,n] ≤ ∥x− f∥∞,[0,M ] < δ, hence

d(x, f) ≤
M∑
n=1

2−nδ +
∑
n>M

2−n ≤ δ + ε

2
.

Choose δ = ε/2 to get d(x, f) < ε. Thus D is dense, and the space is separable.

Combining (A) and (B), (C[0,∞), d) is a complete, separable metric space.

22



Solution 12.4. Let (Wu)u≥0 be a Brownian motion and fix 0 ≤ s < t. Put

m :=
s+ t

2
, A :=Wm −Ws, B :=Wt −Wm.

By independent increments, A and B are independent, and

A ∼ N (0,m− s), B ∼ N (0, t−m).

Since m = s+t
2 , we have m− s = t−m = t−s

2 , hence

A,B i.i.d. N

(
0,
t− s
2

)
.

Now note that
Wm =Ws +A, Wt =Ws +A+B.

Condition on the event {Ws = x, Wt = y}. Then A+B = y−x is fixed, and we need the conditional
law of A given A+B = y − x where A,B are i.i.d. centered Gaussians with variance σ2 := t−s

2 .
For i.i.d. A,B ∼ N (0, σ2), the vector (A,A+B) is jointly Gaussian with

E[A] = 0, E[A+B] = 0, Var(A) = σ2, Var(A+B) = 2σ2, Cov(A,A+B) = Var(A) = σ2.

Hence, by the Gaussian regression formula,

A
∣∣ (A+B) = c ∼ N

(
Cov(A,A+B)

Var(A+B)
c, Var(A)− Cov(A,A+B)2

Var(A+B)

)
= N

(
c

2
,
σ2

2

)
.

Taking c = y − x and σ2 = t−s
2 gives

A
∣∣ (A+B) = y − x ∼ N

(
y − x
2

,
t− s
4

)
.

Therefore, since Wm =Ws +A and Ws = x,

Wm | (Ws = x,Wt = y) ∼ N

(
x+

y − x
2

,
t− s
4

)
= N

(
x+ y

2
,
t− s
4

)
.

This is exactly the desired conditional distribution.

13 Homework 13 (Dec 16th)

Solution 13.1. Let ∆ = {0 = t0 < t1 < · · · < tn = t} be a partition and write ∆Wj :=Wtj+1
−Wtj ,

∆tj := tj+1 − tj, and tj+ 1
2
:=

tj+tj+1

2 .

(1) Midpoint approximation. Use the identity (split term method)

(∆Wj)
2 =

(
W 2
tj+1
−W 2

tj

)
− 2Wtj∆Wj = 2Wt

j+1
2

∆Wj +
(
Wtj+1

− 2Wt
j+1

2

+Wtj

)
∆Wj .

Equivalently, the cleanest split is

Wt
j+1

2

∆Wj =
1

2

(
W 2
tj+1
−W 2

tj

)
− 1

2

(
Wtj+1

−Wt
j+1

2

)2
+

1

2

(
Wt

j+1
2

−Wtj

)2
,

which follows by expanding squares with a =Wtj+1−Wt
j+1

2

, b =Wt
j+1

2

−Wtj and usingWt
j+1

2

∆Wj =
1
2 (a+ b)(a− b) + 1

2 (W
2
tj+1
−W 2

tj ).
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Summing over j yields

n−1∑
j=0

Wt
j+1

2

∆Wj =
1

2

(
W 2
t −W 2

0

)
+

1

2

n−1∑
j=0

[
(Wt

j+1
2

−Wtj )
2 − (Wtj+1 −Wt

j+1
2

)2
]
.

Since W0 = 0, it remains to show the last sum goes to 0 in L2. Let

R∆ :=

n−1∑
j=0

[
(Wt

j+1
2

−Wtj )
2 − (Wtj+1

−Wt
j+1

2

)2
]
.

For each j, the two increments are independent N (0,∆tj/2), so the difference has mean 0 and
variance

Var
(
(Wt

j+1
2

−Wtj )
2 − (Wtj+1

−Wt
j+1

2

)2
)
= 2Var

(
(Wt

j+1
2

−Wtj )
2
)
= 2 · 2

(∆tj
2

)2
= (∆tj)

2,

using Var(X2) = 2σ4 for X ∼ N (0, σ2). Moreover, for different j these terms are independent
(disjoint increments), hence

E[R2
∆] = Var(R∆) =

n−1∑
j=0

(∆tj)
2 ≤ |∆|

n−1∑
j=0

∆tj = |∆| t −−−−→
|∆|→0

0.

Therefore R∆ → 0 in L2, and so

n−1∑
j=0

Wt
j+1

2

(Wtj+1
−Wtj ) −−→

L2

1

2
W 2
t .

(2) Right endpoint approximation. Use the split

Wtj+1
∆Wj =

1

2

(
W 2
tj+1
−W 2

tj

)
+

1

2
(∆Wj)

2,

since Wtj+1 =Wtj +∆Wj. Summing over j gives

n−1∑
j=0

Wtj+1∆Wj =
1

2
W 2
t +

1

2

n−1∑
j=0

(∆Wj)
2.

By Proposition 2.2 (quadratic variation),
∑
j(∆Wj)

2 → t in L2 as |∆| → 0. Hence

n−1∑
j=0

Wtj+1(Wtj+1 −Wtj ) −−→
L2

1

2
W 2
t +

t

2
.

This proves the claimed limits in L2(Ω).

Solution 13.2. Notation. Define the (probabilists’) Hermite polynomials

hn(x) := (−1)nex
2/2 d

n

dxn
(
e−x

2/2
)
,

and for a > 0 define

Hn(x, a) := an/2hn

(
x√
a

)
, Hn(x, 0) := xn.
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(a) Generating functions.
First prove

∞∑
n=0

un

n!
hn(x) = exp

(
ux− u2

2

)
.

Let G(u, x) := exp(ux− u2/2). Using the definition of hn and Taylor expansion,

e−x
2/2G(u, x) = exp

(
ux− x2

2
− u2

2

)
= exp

(
− (x− u)2

2

)
.

Differentiate in u at u = 0:

∂n

∂un

(
e−x

2/2G(u, x)
)∣∣∣
u=0

=
∂n

∂un
exp

(
− (x− u)2

2

) ∣∣∣
u=0

= (−1)n dn

dxn
e−x

2/2.

Multiplying by ex
2/2 gives

∂n

∂un
G(u, x)

∣∣∣
u=0

= hn(x).

Hence the Taylor series of G in u yields the desired generating function.
For a > 0,

∞∑
n=0

un

n!
Hn(x, a) =

∞∑
n=0

(
√
a u)n

n!
hn

(
x√
a

)
= exp

(√
a u

x√
a
− (
√
a u)2

2

)
= exp

(
ux− au2

2

)
.

Also Hn(x, 0) = xn is consistent since the right-hand side becomes eux at a = 0.

(b) PDE and derivative identities.
Let

F (u;x, a) :=

∞∑
n=0

un

n!
Hn(x, a) = exp

(
ux− au2

2

)
.

Differentiate F :

∂xF = uF, ∂xxF = u2F, ∂aF = −u
2

2
F.

Thus (1
2
∂xx + ∂a

)
F =

(1
2
u2 − 1

2
u2
)
F = 0.

Comparing coefficients of un/n! gives, for each n,(1
2

∂2

∂x2
+

∂

∂a

)
Hn(x, a) = 0.

Also, from ∂xF = uF ,

∞∑
n=0

un

n!
∂xHn(x, a) = u

∞∑
n=0

un

n!
Hn(x, a) =

∞∑
n=1

un

(n− 1)!
Hn−1(x, a).

Comparing coefficients yields
∂

∂x
Hn(x, a) = nHn−1(x, a).

(c) Relation (3.3) via Itô + induction.
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Let W be Brownian motion and define the iterated Itô integrals

In(t) :=

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

dWtn · · · dWt1 , I0(t) := 1.

Note the recursion (by definition/Fubini for stochastic integrals)

In(t) =

∫ t

0

In−1(s) dWs, n ≥ 1.

Now apply Itô’s formula to the space-time function (x, a) 7→ Hn(x, a) at (x, a) = (Wt, t):

dHn(Wt, t) = ∂xHn(Wt, t) dWt +
(
∂tHn(Wt, t) +

1

2
∂xxHn(Wt, t)

)
dt.

Using (b) with a = t gives ∂tHn + 1
2∂xxHn = 0, hence

dHn(Wt, t) = ∂xHn(Wt, t) dWt = nHn−1(Wt, t) dWt.

Since Hn(W0, 0) = Hn(0, 0) = 0 for n ≥ 1, integrating yields

Hn(Wt, t) = n

∫ t

0

Hn−1(Ws, s) dWs.

Divide by n!:
1

n!
Hn(Wt, t) =

∫ t

0

1

(n− 1)!
Hn−1(Ws, s) dWs.

Induction. For n = 0, 1
0!H0(Wt, t) = 1 = I0(t). Assume 1

(n−1)!Hn−1(Wt, t) = In−1(t). Then the

previous display gives
1

n!
Hn(Wt, t) =

∫ t

0

In−1(s) dWs = In(t).

Thus for all n ≥ 0,

In(t) =
1

n!
Hn(Wt, t).

Finally, using the definition Hn(x, a) = an/2hn(x/
√
a) with a = t,

In(t) =
1

n!
tn/2 hn

(
Wt√
t

)
,

which is exactly relation (3.3).

Solution 13.3. (a) dXt +
1

1+tXt dt =
1

1+tdWt. Take the integrating factor µ(t) = 1 + t and set
Yt = (1 + t)Xt. Then

dYt = (1 + t)dXt +Xtdt = dWt,

so Yt =Wt (since Y0 = 0). Hence

Xt =
Wt

1 + t
.

(b) dXt +Xt dt = e−tdWt. Take the integrating factor µ(t) = et and set Yt = etXt. Then

dYt = etdXt + etXtdt = dWt,

so Yt = X0 +Wt. Hence
Xt = e−t(X0 +Wt).

26



Solution 13.4. Consider the d-dimensional OU SDE

dXt = AXt dt+ σ dWt,

where A ∈ Rd×d, σ ∈ Rd×m, and (Wt) is m-dimensional Brownian motion. Let

mt := E[Xt], Σt := Cov(Xt) = E[(Xt −mt)(Xt −mt)
⊤].

Mean. Taking expectation in the SDE (the Itô term has zero mean) gives

d

dt
mt = Amt.

A stationary mean m∞ must satisfy d
dtmt = 0, hence

Am∞ = 0.

Covariance. Let Mt := Xt −mt. Then dMt = AMt dt+ σ dWt. Apply Itô to MtM
⊤
t :

d(MtM
⊤
t ) = (dMt)M

⊤
t +Mt(dMt)

⊤ + (dMt)(dMt)
⊤.

Using dMt = AMt dt+ σ dWt and (dWt)(dWt)
⊤ = Im dt,

(dMt)(dMt)
⊤ = σ dWt dW

⊤
t σ

⊤ = σσ⊤dt.

Taking expectations and noting E[dWt] = 0 yields the Lyapunov ODE

d

dt
Σt = AΣt +ΣtA

⊤ + σσ⊤.

A stationary covariance Σ∞ must satisfy d
dtΣt = 0, hence

AΣ∞ +Σ∞A
⊤ + σσ⊤ = 0.

Therefore the stationary mean and covariance must satisfy

Am∞ = 0, AΣ∞ +Σ∞A
⊤ + σσ⊤ = 0

(the second equation is the continuous-time algebraic Lyapunov equation).

Solution 13.5. Let ∆ = {0 = t0 < · · · < tn = T} and define the backward (right-endpoint) integral
by the Riemann sums∫ T

0

f(t, ω) ∗ dWt := lim
|∆|→0

n−1∑
j=0

f(tj+1, ω)∆Wj , ∆Wj :=Wtj+1
−Wtj ,

whenever the limit exists (e.g. in L2). Consider the backward SDE

Xtj+1
−Xtj = b(Xtj , tj)∆tj + σ(Xtj+1

, tj+1)∆Wj , ∆tj := tj+1 − tj .

Rewrite the stochastic term by expanding σ(Xtj+1
, tj+1) around (Xtj , tj):

σ(Xtj+1
, tj+1) = σ(Xtj , tj) + ∂xσ(Xtj , tj) (Xtj+1

−Xtj ) + op(|Xtj+1
−Xtj |) +O(∆tj),
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so multiplying by ∆Wj and using Xtj+1 −Xtj = Op(
√
∆tj) gives

σ(Xtj+1
, tj+1)∆Wj = σ(Xtj , tj)∆Wj + ∂xσ(Xtj , tj) (Xtj+1

−Xtj )∆Wj + op(∆tj).

Substitute Xtj+1
− Xtj = b(Xtj , tj)∆tj + σ(Xtj+1

, tj+1)∆Wj into the product term; the drift part

contributes Op(∆t
3/2
j ) and is op(∆tj), while the leading contribution is

(Xtj+1
−Xtj )∆Wj = σ(Xtj+1

, tj+1)(∆Wj)
2 + op(∆tj) = σ(Xtj , tj)(∆Wj)

2 + op(∆tj).

Hence

σ(Xtj+1 , tj+1)∆Wj = σ(Xtj , tj)∆Wj + ∂xσ(Xtj , tj)σ(Xtj , tj)(∆Wj)
2 + op(∆tj).

Plugging back into the increment equation,

Xtj+1
−Xtj = b(Xtj , tj)∆tj + σ(Xtj , tj)∆Wj + ∂xσ(Xtj , tj)σ(Xtj , tj)(∆Wj)

2 + op(∆tj).

Summing over j and letting |∆| → 0, we use the quadratic variation
∑
j(∆Wj)

2 → T and, more
generally, ∑

j

∂xσ(Xtj , tj)σ(Xtj , tj)(∆Wj)
2 −→

∫ T

0

∂xσ(Xt, t)σ(Xt, t) dt

(in probability, or in L1 under standard growth/Lipschitz conditions). The term
∑
j op(∆tj) → 0.

Therefore the limiting continuous-time equation is

dXt =
(
b(Xt, t) + ∂xσ(Xt, t)σ(Xt, t)

)
dt+ σ(Xt, t) dWt,

i.e. the backward SDE dXt = b(Xt, t) dt + σ(Xt, t) ∗ dWt is equivalent to the Itô SDE with drift
correction ∂xσ · σ.

14 Homework 14 (Dec 16th)

Solution 14.1. Let Xt ∈ Rd solve a diffusion driven by an m-dimensional Brownian motion. Write
σ(x, t) ∈ Rd×m with entries σik(x, t), and set

a(x, t) := σ(x, t)σ(x, t)⊤, aij =

m∑
k=1

σikσjk.

Let p(x, t) be the transition density of Xt (assume smooth and decaying so integration by parts is
justified). For a test function φ ∈ C∞

c , define ⟨pt, φ⟩ :=
∫
Rd φ(x)p(x, t) dx.

1) Stratonovich SDE ⇒ PDE (2.11). Assume the Stratonovich dynamics

dXt = b(Xt, t) dt+ σ(Xt, t) ◦ dWt.

The Stratonovich generator acting on φ is (chain rule form)

Lφ = bi ∂iφ+
1

2

m∑
k=1

(σ·k · ∇)2φ = bi ∂iφ+
1

2
σik ∂i

(
σjk∂jφ

)
,

(using Einstein summation over repeated indices i, j = 1, . . . , d and k = 1, . . . ,m). By the Kol-
mogorov forward equation in weak form,

d

dt
⟨pt, φ⟩ = ⟨pt, Lφ⟩ =

∫
p bi∂iφdx+

1

2

∫
p σik∂i(σjk∂jφ) dx.
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Integrate by parts: first term ∫
p bi∂iφdx = −

∫
φ∂i(bip) dx.

For the second term, integrate by parts twice:∫
p σik∂i(σjk∂jφ) dx = −

∫
σjk∂jφ∂i(σikp) dx =

∫
φ∂j

(
σjk ∂i(σikp)

)
dx.

Hence
d

dt
⟨pt, φ⟩ =

∫
φ

[
−∂i(bip) +

1

2
∂j

(
σjk ∂i(σikp)

)]
dx.

Since this holds for all φ, we obtain the PDE

∂tp+ ∂i(bip) =
1

2
∂j

(
σjk ∂i(σikp)

)
.

In vector notation this is exactly

∂tp+∇x · (bp) =
1

2
∇x ·

(
σ∇x · (σp)

)
with (∇x · (σ∇x · (σp)))j = ∂j(σjk∂i(σikp)), which is (2.11).

2) Backward (right-endpoint) integral ⇒ PDE (2.12). Assume the backward SDE

dXt = b(Xt, t) dt+ σ(Xt, t) ∗ dWt.

From the earlier conversion (backward → Itô),

dXt = b̃(Xt, t) dt+ σ(Xt, t) dWt, b̃i = bi + ∂kσij σkj ,

(where ∂k = ∂/∂xk and we sum over j = 1, . . . ,m). For the Itô SDE, the (Itô) generator is

LItoφ = b̃i∂iφ+
1

2
aij∂ijφ, aij = σikσjk.

The forward (Fokker–Planck) equation is the adjoint:

∂tp = −∂i(b̃ip) +
1

2
∂ij(aijp).

Substituting b̃i = bi + ∂kσijσkj and aij = σikσjk gives

∂tp+ ∂i

[(
bi + ∂kσijσkj

)
p
]
=

1

2
∂ij
(
σikσjk p

)
which is exactly (2.12) (with ∂ij = ∂i∂j).

Remark 14.1. Write the standard SDE and calculate the generator.

Solution 14.2. Consider the OU SDE on Rd

dXt = BXt dt+ σ dWt, a := σσ⊤ ∈ Rd×d,

and assume the invariant density is Gaussian π = N (0,Σ) with Σ ≻ 0.
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Step 1: Fokker–Planck equation and probability current. For an Itô diffusion dXt =
b(Xt) dt+ σ dWt with constant a = σσ⊤, the density p(x, t) solves

∂tp(x, t) = −∇ · (b(x)p(x, t)) +
1

2
∇ ·
(
a∇p(x, t)

)
= −∇ · J(x, t),

where the probability current is

J(x, t) := b(x)p(x, t)− 1

2
a∇p(x, t).

Here b(x) = Bx, so at stationarity (p = π),

J(x) := Bxπ(x)− 1

2
a∇π(x).

Step 2: Detailed balance ⇔ J ≡ 0. Detailed balance (reversibility) means the net flux between
any two states cancels; for diffusions this is equivalent to vanishing stationary current:

Detailed balance ⇐⇒ J(x) ≡ 0.

Step 3: Compute ∇π for π = N (0,Σ). Up to a constant,

π(x) = exp

(
−1

2
x⊤Σ−1x

)
.

Hence
∇ log π(x) = −Σ−1x, ∇π(x) = π(x)∇ log π(x) = −Σ−1xπ(x).

Step 4: Convert J ≡ 0 into a matrix identity. Substitute the gradient into the current:

0 = J(x) = Bxπ(x)− 1

2
a
(
−Σ−1xπ(x)

)
=
(
B +

1

2
aΣ−1

)
xπ(x).

Since this holds for all x ∈ Rd and π(x) > 0, we obtain

B +
1

2
aΣ−1 = 0 ⇐⇒ B = −1

2
aΣ−1 ⇐⇒ a = −2BΣ .

This is the detailed balance condition in matrix form.

15 Project 1

15.1 Introduction and Setting

The Potts model is a fundamental generalization of the Ising model in statistical mechanics, in
which each lattice site can occupy one of q discrete states. It plays a key role in the study of phase
transitions and critical phenomena, especially in two-dimensional systems.

In this project, we investigate the phase transition behavior of the two-dimensional q-state Potts
model on a square lattice with periodic boundary conditions. The system is simulated using the
Metropolis Monte Carlo algorithm, and various thermodynamic quantities are measured near the
critical temperature.
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The Hamiltonian of the Potts model is given by

H(σ) = −J
∑
⟨i,j⟩

δσi,σj − h
∑
i

σi, (2)

where σi ∈ {1, . . . , q} denotes the state at lattice site i, δσi,σj is the Kronecker delta, J is the
nearest-neighbor interaction strength, and h is an external magnetic field. The sum ⟨i, j⟩ runs over
all nearest-neighbor pairs.

Throughout this study, we focus on the case q = 3 with the following parameter settings:

• Lattice size: N ×N square lattice with N = 100,

• Number of states: q = 3,

• Interaction strength: J = 1,

• Boltzmann constant: kB = 1,

• External field: h = 0 unless otherwise specified.

These choices allow us to systematically explore the thermodynamic behavior and phase transi-
tion properties of the two-dimensional three-state Potts model.

15.2 Question 1

Model 2D q-state Potts model on an N × N square lattice (PBC), coupling J . Each site sij ∈
{0, 1, . . . , q − 1}.

• Parameters: N = 128, q = 3, J = 1.

• Temperature scan: T ∈ [0.5, 1.5] (11 points), β = 1/T .

• Initialization: i.i.d. random states on the lattice.

• Metropolis sweep: repeat N2 times: pick (i, j) uniformly, propose s′ij ̸= sij uniformly from

the other q − 1 states, accept with prob. min{1, e−β∆E}.

• Energy: H = −J
∑

⟨xy⟩ 1[sx = sy] (count each nearest-neighbor bond once).

• Thermalization: ntherm = 20000 sweeps per T .

• Sampling: nsample = 50000 sweeps per T ; record H every k = 10 sweeps (nmeas = nsample/k).

• Observables (per site):

u =
⟨H⟩
N2

, c =
β2 Var(H)

N2
.

Results Figure 1 shows the internal energy per site u and the specific heat c of the 2D q = 3 Potts
model as functions of temperature.

The internal energy decreases monotonically with decreasing temperature. At high temperatures
the system is disordered, while at lower temperatures spin alignment becomes favorable, leading to
a rapid drop in u. A noticeable change in slope occurs near T ≃ 1.

The specific heat exhibits a clear peak around T ≃ 1, indicating enhanced energy fluctuations
and signaling a thermal phase transition. Due to the finite lattice size, the peak is smooth and finite.
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Figure 1: Internal energy (left) and specific heat (right) of the 2D q = 3 Potts model as functions of
temperature.

15.3 Question 2

Model 2D q-state Potts model on an N ×N square lattice (PBC), coupling J , with an external
field h favoring a reference state sref (here sref = 0):

H = −J
∑
⟨xy⟩

1[sx = sy] − h
∑
x

1[sx = sref ], sx ∈ {0, 1, . . . , q − 1}.

• Parameters: N = 128, q = 3, J = 1, sref = 0.

• Scan: T ∈ {0.5, 1.0, 1.5}, h ∈ [−2, 2] (21 points), β = 1/T .

• Initialization: i.i.d. random states.

• Metropolis sweep: repeat N2 times: pick x uniformly, propose s′x ̸= sx uniformly from the
other q − 1 states, accept with prob. min{1, e−β∆E} (including interaction + field).

• Thermalization: ntherm = 8000 sweeps per (T, h).

• Sampling: nsample = 20000 sweeps per (T, h); record every k = 10 sweeps.

• Observable: σx = 1[sx = sref ], M =
∑
x σx, and

m =
⟨M⟩
N2

∈ [0, 1] (baseline m = 1/q by symmetry at h = 0).

• Continuation: when scanning h, the final configuration at one h is used to initialize the next
h (otherwise re-randomize at each h).

Results Figure 2 shows the magnetization m = ⟨M⟩/N2 as a function of the external field h for
different temperatures.

At h = 0, the magnetization is close to the symmetric value m = 1/q, indicating no preference
among Potts states. As h increases, the field favors the reference state andm increases monotonically.
This response becomes sharper at lower temperatures: for T = 0.5 the magnetization rises abruptly,
while for higher T the curve is smoother due to stronger thermal fluctuations.
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Figure 2: Magnetization m = ⟨M⟩/N2 versus external field h for the 2D q = 3 Potts model at
different temperatures. The dashed line indicates the symmetric value m = 1/q.

15.4 Question 3

Model 2D q-state Potts model on an N ×N lattice (PBC), q = 3, J = 1, zero field:

H = −J
∑
⟨xy⟩

1[sx = sy], sx ∈ {0, 1, 2}.

• Scan: T ∈ [0.5, 1.5] (11 points), β = 1/T .

• Update: Metropolis sweeps (each sweep N2 proposals).

• Thermalization: ntherm = 8000 sweeps per T .

• Sampling: nsample = 20000 sweeps; measure every kint = 20 sweeps.

• Indicator: σx = 1[sx = sref ] with sref = 0, m = ⟨σ⟩.

• Correlation estimator: for k = 1, . . . , N/2,

Γ(k) =
1

4N2

∑
x

∑
y∈Sx(k)

(
σxσy −m2

)
, Sx(k) = {x± kêx, x± kêy}.

• Fit: estimate ξ from Γ(k) ≈ Γ0e
−k/ξ by a linear fit of log Γ(k) over k ∈ [kmin, kmax] with

kmin = 4, kmax = N/2.

Results Figure 3 shows the correlation length ξ as a function of temperature for the 2D q = 3
Potts model at zero field.

The correlation length increases rapidly as the temperature approaches T ≃ 1 from both sides,
indicating the development of long-range correlations near the critical point. Away from this region,
ξ remains finite and small, corresponding to short-range order in both the high- and low-temperature
phases. The finite peak of ξ is due to the finite lattice size.

15.5 Question 4

Data Specific heat c(T ) and correlation length ξ(T ) obtained from previous simulations of the 2D
q = 3 Potts model.
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Figure 3: Correlation length ξ as a function of temperature T for the 2D q = 3 Potts model at zero
external field.

• Critical temperature: fixed to T ∗ = 1.

• Reduced temperature: ϵ = |1− T/T ∗|.

• Selection: use all valid data points with ϵ > 0 and finite c, ξ (no scaling window imposed).

• Scaling ansatz:
c(ϵ) ∼ ϵ−γ , ξ(ϵ) ∼ ϵ−δ.

• Fit: linear regression on log–log data, log y = a+b log ϵ, with exponents γ = −bc and δ = −bξ.
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Figure 4: Log–log scaling of the specific heat c (left) and correlation length ξ (right) as functions of
the reduced temperature ϵ = |1− T/T ∗| with T ∗ = 1. Solid lines indicate linear fits using all valid
data points.

Results Figure 4 shows the log–log fits of the specific heat c and the correlation length ξ as
functions of the reduced temperature ϵ = |1− T/T ∗| with T ∗ = 1.

Using all valid data points, both observables exhibit approximate power-law behavior. Linear
regression yields the effective exponents γ ≃ 0.53 for the specific heat and δ ≃ 0.61 for the correlation
length. Deviations from ideal scaling are expected due to finite-size effects and the absence of a
restricted asymptotic scaling window.
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16 Project 2

16.1 Introduction

This project investigates the numerical simulation of exit times for a two-dimensional stochastic
differential equation (SDE) driven by a nontrivial potential landscape. The SDE is given by

dXt = −∇V (Xt) dt+
√
2ε dWt,

where Xt = (Xt, Yt) ∈ R2, ε > 0 denotes the noise intensity, and Wt is a two-dimensional standard
Wiener process.

The potential function V (x, y) is constructed from a symmetric mixture of two Gaussian distri-
butions centered at (±1, 0):

p+(x, y) = N
(
(1, 0), I2

)
, p−(x, y) = N

(
(−1, 0), I2

)
,

p(x, y) =
1

2

(
p+(x, y) + p−(x, y)

)
, V (x, y) = − log p(x, y),

where I2 denotes the 2 × 2 identity matrix. This construction yields a double-well potential with
two metastable regions separated by a barrier near x = 0.

The main quantity of interest is the expected exit time

T (ε, x0) = Ex0

[
τεb
]
, τεb = inf{t ≥ 0 : Xt = 0},

defined as the first time the process reaches the boundary x = 0.
The objectives of this project are to:

• compute T (ε, x0) numerically for a fixed initial condition x0 = (1, 0);

• investigate the dependence of the exit time on the noise intensity ε;

• explore the influence of different initial positions x0 on the exit behavior.

16.2 Parameter Settings

Unless otherwise specified, the numerical experiments are performed with the following parameter
choices:

• Time step: ∆t = 10−3.

• Noise intensity: ε is varied over a range from relatively large to small values (e.g., ε ∈
{1.0, 0.6, 0.4, 0.3, 0.2, 0.15, 0.1}) in order to investigate its effect on the exit time.

• Initial condition: The default initial position is x0 = (1, 0). Additional experiments are
conducted with different initial points to study the dependence of the exit time on x0.

• Stopping criterion: The exit time τ εb is defined as the first time the first coordinate reaches
zero, i.e.,

τεb = inf{t ≥ 0 : Xt = 0}.
In the numerical implementation, the exit event is detected when the discrete trajectory crosses
x = 0, with linear interpolation used to improve accuracy.

• Maximum simulation time: A cutoff time Tmax is imposed to avoid excessively long sim-
ulations. Typically, Tmax = 200 for moderate values of ε, and increased up to Tmax = 400 for
smaller ε.

• Monte Carlo sample size: For each parameter configuration, N = 2000 independent tra-
jectories are simulated to estimate the expected exit time.
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16.3 Results

16.3.1 Effect of noise level ε

For x0 = (1, 0), the Monte Carlo estimate of the exit time T (ε, x0) increases monotonically as ε
decreases. Specifically, T (ε, x0) grows from 1.67 at ε = 1.0 to 7.84 at ε = 0.06 (all standard errors
below 0.14). This trend is also visible in Figure 5. [<empty citation>]

To examine scaling, we plot log T̂ (ε, x0) against 1/ε (Figure 6). The relationship is approximately
linear, suggesting an exponential law of the form

T (ε, x0) ≈ C exp

(
∆V

ε

)
,

consistent with metastable barrier-crossing dynamics. See Figure 6. [<empty citation>]

16.3.2 Effect of initial condition x0

Fixing ε = 0.2, we vary x0 and observe that the exit time mainly depends on the x-coordinate.
Starting closer to the boundary reduces the exit time: T̂ (0.2, (0.8, 0)) = 3.55 versus T̂ (0.2, (1.2, 0)) =
4.34. In contrast, changing the transverse coordinate has negligible influence in our experiments:
T̂ (0.2, (1, 0)) ≈ T̂ (0.2, (1, 0.5)) ≈ T̂ (0.2, (1, 1)) ≈ 3.96.
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Figure 5: Estimated exit time T (ε, x0) versus ε with x0 = (1, 0).

Overall, the exit time increases rapidly as ε decreases, and log T (ε, x0) is approximately linear
in 1/ε, indicating metastable barrier-crossing behavior.
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Figure 6: log T̂ (ε, x0) versus 1/ε with x0 = (1, 0). The near-linearity indicates T (ε, x0) grows
approximately exponentially as ε→ 0.
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