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1 Homework 1 (Sep 8th)

Solution 1.1. We want to compute

C=AB=> A;B,,
i=1
that is, a sum of n rank-one outer products. The randomized estimator is constructed by sampling
indices iy € {1,...,n}, m=1,..., K, with probabilities {p;}, and defining
L Ly pm__ 1 p

VEp, VEp,, "
The approximation is
K
€= LR
m=1

Taking expectation,
E[LM™ R(M™)] = Xn:pi Ly B;. = 1 iA. iBi ..
- Kp, TR 2 e

Summing over m =1,..., K gives
E[C] = C,

so the estimator is unbiased.
The accuracy can be described in terms of the variance
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This shows that the estimator is unbiased and its variance decays as 1/K, so the accuracy improves
with more samples, and the bound highlights that the choice of sampling distribution {p;} is crucial:
selecting p; o ||A. ;||| Bi:|| minimizes the variance up to constants.

.

[N

Solution 1.2. Let [0,1] be partitioned uniformly with step h = 1/n and midpoints m; = (i —
On each cell I; = [(i — 1)h,ih], Taylor expand f about m;:

f(@) = fmq) + f'(ma)(x —my) + %f//(fi,x)(x —m;)?, x € I;.

Integrate over I;; the odd term vanishes:

h/2
[ p@de=npm) [ )

—h/2



for some &; € I;. Hence the midpoint rule

satisfies

/f dm*Qh—Z / "(Eimire) 2 dt.

If f € C?[0,1] and || f"]loc < M, then

/th

so the midpoint rule has global error O(h?) (second-order convergence).

M
fo —h2
24

Monte Carlo integration of sin(x) on [0,1]
Fitted slope = -0.493 (expected -0.5)

—8— mean |error|
N~ {-1/2} reference

Mean absolute error

T T T T T
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Solution 1.3.

2 Homework 2 (Sep 10th)

Solution 2.1. Let (Ay) be independent with ) P(A,) = co. For m > 1, set By, = ,,>,, An-
Then {A,, i.0.} =(),,51 Bm, s0 P(A,, i.0.) = limy, oo P(By,) = 1 — limy, 0o P(BE,). Now B, =
Nnsm A, and by independence

( N AC> = H —P(A,)) < exp (- > IP(An)) ——0,

since the series diverges. Hence P(BS)) =0 for each m, so the limit is 0 and P(A,, i.0.) = 1.
Solution 2.2. If X ~ Pois()\), Y ~ Pois(p) are independent, then for k € Z>q,
- : , (A P vy A )*
PX+Y =k)=> P(X=i)P(Y =k—i)=e( +N>Zm =e( WT’

=0 =0

which is the pmf of Pois(\ + p).



Solution 2.3. With X ~ Pois(\), Y ~ Pois(u) independent and N = X +Y fized, for x =
0,1,...,N,

x N—x
PX — o | X4y — 3y = P =Y =N —o) (5 ) Ny A N e )Y
B T PX+Y=N) eaw@i® e S\ ) \ A+ p '

!

Hence X | (X 4+Y = N) ~Bin(N, /(A + u)) (and symmetrically for Y).
Solution 2.4. (1) Let X ~ Exp(\) with tail F(z) = P(X > x) = e ** for x > 0. For s,t >0,

F t —)\(s—‘rt)
P(X>s+t]| X >s)= ;_,S(:) ) = eef)\s =eM=P(X >1t).

This is the memoryless property.
(2) Assume P(X > s+t) =P(X > s)P(X > t) for all s,t > 0. Let ¢(t) = P(X > ¢) fort > 0.
Then $(0) = 1, ¢ is nonincreasing and right—continuous, and

Pls +1) = d(s)o(t) (s, =0).

Put g(t) = —log ¢(t) (well-defined since ¢(t) € (0,1]). Then g(0) =0, g is measurable and g(s+t) =
g(s)+g(t), so by Cauchy’s functional equation in the measurable/monotone case, g(t) = At for some
A > 0. Because ¢(t) — 0 as t — oo for a proper r.v., we must have X > 0. Hence ¢(t) = e and
therefore X ~ Exp()).

Solution 2.5. Let (Xq,...,X,,) be centered jointly Gaussian with covariance matriz ¥ = (3;;).
The mgf of T = Y"1 t; X; is

My (u) = Ee"T = exp(3u?t' St).

By multilinearity,

3k
E(X;, - X;,) = —————exp(5t' %t
( 11 11«) 3751'1 . 8tz’k Xp(Q ) —o
If k is odd, all derivatives vanish at t = 0 and the moment is 0. For even k = 2m, differentiating
the quadratic exponent generates a sum over all pairings © of {1,...,2m}; each pairing contributes

H(a’b)eﬂ Yap. Thus

Z H E(X.X3), k even,

E(Xl - Xk) = { pairings © (a,b)Em
0, k odd.

This is Wick’s (Isserlis’) theorem; e.g. for (X,Y,Z) one obtains the expansion illustrated in the
prompt by listing all pairings with their multiplicities.

Solution 2.6. Suppose (A,,) are mutually independent, P(U,>14,,) =1, and P(A4,,) < 1 for each n.
Then by independence,

N N
P(ﬂ Ag) = [ -P4,) ~=0
n=1

n=1

because P(Ny>1A5) =1 —P(Up>14,) =0. Fixm. For M > m,

") IS (L= P(Ay)) Mo

n=m n=1




since the denominator is strictly positive by P(A,) < 1. Hence P(Up>mAyn) = 1 for every m, and
therefore

P4, io)=P| () |J 4n| =1L
m>1 n>m

Solution 2.7. We choose n = 200 as sample size, py = 0.01 for the approzimation of Poisson
distribution, po = 0.5 for the approximation of Normal distribution.

Binomial — Poisson limit
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3 Homework 3 (Sep 15th)

Solution 3.1. A complete implementation is provided in the accompanying MATLAB code.



Poisson — Normal limit
0.06 T

Poisson(X = 50)

—o0
}j*"* N(50,50)
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Solution 3.2. There are several intuitive methods to generate a random point uniformly on the
sphere surface S?. We describe two classical approaches:

Approach 1. Normalized Gaussian vectors.
1. Generate Z1,Zs,Zs ~ A (0, 1) independently.
2. Form the vector Z = (Zy1, Zs, Z3).
3. Normalize: X = Z/||Z||.

Because the multivariate Gaussian distribution is rotationally invariant, the direction Z/||Z|| is
uniformly distributed on S>.

Approach 2. Direct spherical coordinates.
1. Generate ¢ ~ Unif[0, 27].
2. Generate u ~ Unif[—1,1] and set cost = u.

3. Conwvert to Cartesian coordinates:
T =11—u?cos g, y=1+/1—wu?sin ¢, z = u.

This uses the fact that the surface element on S? is proportional to sinfdf dg, so cosf is uniform
on [—1,1].

Comparison. The Gaussian normalization method is very general and works in higher dimensions.
The spherical coordinate method is more geometric and provides intuition about the distribution of
latitude and longitude.

Solution 3.3. In Algorithm 2.6 we draw X from the density g(x) = f(x)/A by the inverse transform
X =FYAZ) (here A= [ f(z)dzx and F is the primitive of f), then drawY | X ~ Unif|0, f(X)]
and accept iff Y < p(X).

Conditioning on X = x, the acceptance probability is

P(accept | X =) = ‘;E?) (since Y ~ Unif[0, f(x)]).



Hence the unconditional acceptance probability is

P(accept) = E{ZJZE);;))} = / ?Ei; % dx = %/p(:r) dz.

If p is a normalized pdf, [ p(z)dz =1 and thus P(accept) = 1/A. Therefore the rejection probability

of one trial is
Jp@@)de 1

A A

Solution 3.4. Correctness. Because go(X) < p(X), the rule above is equivalent to

X
accept <—= U < ]\;;(8)()

P(reject) = 1 —

Therefore

P(X € dz, accept) = g (x)dx - ]\41;(7:236) = 1% dz.

Z.
Let Z, := [ p(z)dz. Then P(accept) = /]% dr = Mp and, conditioning on acceptance,
p(z)dz/M _ p(z)

P(X € dz | accept) = M Z
P P

dx,

i.e., the accepted X has density proportional to p, hence exactly p when p is normalized.

Advantage over Algorithm 2.6. The overall acceptance probability remains Z,/M (the same
as the standard envelope M g,,, ). However, Step 2 provides a squeeze: whenever U < go(X)/(M g (X))
we accept without evaluating the potentially expensive p(x). Only in the remaining cases do we com-
pute p(z) to decide. Thus the algorithm:

o reduces the expected number of evaluations of p(-) per accepted sample;

e yields faster simulation when gy is easy to compute and is a good lower bound of p.

4 Homework 4 (Sep 22th)

Solution 4.1. Let X ~ U[0,1] and let f : [0,1] — R be monotone (hence measurable and integrable).
Note that 1 — X ~ U[0,1] and E[f(1 — X)] = E[f(X)]. Therefore

Cov(f(X). (1 = X)) = B (X) (1= X)| = @) = [ f@)s-ayde— ([ fa)as)”

Consider the double integral

I = /0/0 (F(@) — (W) (f(1 —2) — £(1 — u)) dudx.

Ezxpanding and integrating term-by-term gives

I=2/01f(x)f(1—x)dar—2(/ol f)da)

1 1 2 T
| t@sa-ao-( [ ) -3

hence



If f is nondecreasing, then for any x,u € [0, 1],
z>u = f(z)— f(u) 20, l-z<1l-u= f(l-2)—f(1-u)<0,

so the product (f(z)— f(uw)) (f(1—a)— f(1—u)) < 0. The same conclusion holds if f is nonincreasing
(the two factors switch signs). Therefore I < 0 and thus

Cov(f(X), f(1 = X)) =

<0.

l\D\N

Solution 4.2. LetY := f(X) and let 4 := o(X?)). Then
94) | 4] =0. Write the orthogonal decomposition

&=

[Y | 9] is 4 —measurable and E[Y —E(Y |

Y -EY = (Y —E(Y |9)) + (E(Y | 9) — EY).
Squaring and taking exzpectations gives
Var(Y) =E[(Y - E(Y | 9))*] + E[(E(Y | ¥) - EY)*] +2E[(Y —~E(Y | ¢))(E(Y |¥) - EY)].
The cross term is zero by conditional expectation:
E[(Y —E(Y [¢4))(E(Y |¢) -EY)] =E[E[Y —-E(Y |9) | 4] (E(Y |¢) -EY)] =0.
Hence
Var(Y) =E[(Y —E(Y |9))*] +E[(E(Y | %) —EY)?] = E[Var(Y | 4)] + Var(E(Y | ¥)).
Restoring Y = f(X) and 4 = o(X?) yields
Var(f(X)) = Var(E[f(X) | X®)]) + E[ Var(f(X) | X?)],
which is the desired identity.

Solution 4.3. Let f,g be probability densities on a common space (Z ', o/, u) with g > 0 a.e. and

set
D(f|l9) / S log

Write ¢(t) = tlogt, which is strictly conver on (0,00). Then

Difl) = | g<z>¢>(§((g) du().

By Jensen’s inequality applied to the probability measure g du and the convez function ¢,

Jorlf) e o] )< ) 00

whence D(f|lg) > 0.
Moreover, since ¢ is strictly convex, equality in Jensen holds iff % is constant g-a.e. Because

dp ().

[ fdu=1= [gdpu, this constant must be 1, i.e., f(x) = g(z) g-a.e. (and hence p-a.e.). Conversely,
if f =g a.e., then integrand is 0 a.e. and D(f]|g) = 0.

With the convention 0log0 = 0 (and taking f < g so the ratio is well-defined g-a.e.), the result
follows.



5 Homework 5 (Sep 24th)

Solution 5.1. Let (X;);>1 be i.i.d. with X; ~ U[0,1].

(i) Harmonic mean. We claim

n

1 1 a.s. n a.s.
— - ——— X = — — — 0.
n 4 Xj n—00 )(1 44+ X

j=1

Define the truncations Yj(k) = min{X;l, k} for k € N. For each fized k, Yj(k) are i.i.d. with

1 1/k 1
1 1
Eyl(’“):/ min<,k> dx:/ kdx+/ —dr=1+logk T oo (k— o0).
0 € 0

1/k L

By the strong law of large numbers (SLLN),
— Z y* ( ) =1+ log k.
Fix M > 0. Choose k so large that 1 +1logk > M. Then, almost surely, for all sufficiently large n,
n 1 n
— M/2.
22

. . 1 n —1
Since M was arbitrary, - >3 X, — 00 a.s., hence

3=

j:J

- n - a.s. 0.
X T4t Xy

(ii) Geometric mean. Because E|log X;| = fol |logz|dx =1 < oo, the SLLN gives
1 !
— E log X %E[logXl]:/ logxdr = —1.
n < 0
Jj=1

By continuity of the exponential,

VX1 Xs-- = exp ZlogX N

(i1i) Quadratic mean. Since E[X?] fo a*dx = %, the SLLN yields

1 2 a.s. 1
szj o
j=1

Applying the continuous mapping theorem with the square root,

+X2 s, \[

n XZ+--+X2 1
li =0 li Xy X —e L li et L Bt
ngI;oX 4+ . +X;1 ’ nL)H;o ! " €5 nggo n \/g

Combining the three parts,




Solution 5.2. Let X1, Xs,... be i.i.d. random variables with E[X;] = 0. Assume that

X 4 " "
z, = a1t ot An + X 4 x, ZQ,L:—XHr +Xon 4y
vn V2n

and denote the characteristic function of X by f(€) = E[e!X].
(a) Show that [(€) = [*(£/v/2).

Let )
SH=>"X;,  SP=3Y X,

j=1 j=n+1

Then 57(11) and 5’7(12) are independent and have the same distribution as S,. We can write

(R ) e ),
where ZS), Z§L2) are i.i.d. copies of Zy,.

Let ¢, be the characteristic function of Z,. Then

?2n(€) = (pn(€/v2))".
By Lévy’s continuity theorem, ¢, (&) — f(&) and w2,(§) — f(§), hence

F(&) = F2(E/V2).

(b) If f € C*(R), then f is Gaussian.
Let ¢(&) =log f(§) (the continuous branch near 0, noting f(0) =1). From (a),

$(€) = 20(¢/V2).
Define h(§) = ¢(€) /€% for € #0. Then
€)= hE/V2) = h(g) = lim h(¢/2"?) = h(0).
Since f € C?, ¢"(0) = f"(0) — [f'(0)]* ezists, and $(0) = ¢'(0) =0, so h(0) = 3¢"(0) = —10? for
some 02 > 0. Hence e
$(€) = —50°€%,  f(§ =TT,
(0

which is the characteristic function of N

(¢) Replace 1/\/n by 1/n.
Now

,0%).

Zy=tT T 4w 7 A X

Analogously, &) = £2(/2).

Let ¢ =log f. Then ¢(& @(&/2). If [ is even (symmetric) or constant, define h(§) = ¢(€)/|¢].
Thenh()—h(§/2):>h() ( ) = —y with v > 0. Thus

f©) =e,

which is the characteristic function of a (centered) Cauchy—Lorentz distribution (or degenerate at 0

if v=0).

10



(d) Replace 1/\/n by 1/n~.
The same reasoning gives

O =r2€/2%),  9(&) = 26(£/2%).
Assume ¢(§) = —c|EJP for some ¢ > 0. Then
—clglP =2(—clg|P/2°r) = 2" =1 = p= é

Hence
F(€) = exp(—clg[/®),
the characteristic function of a symmetric a-stable law.
For exp(—c||P) to be a characteristic function, 0 < p < 2. Therefore

o>

1
27

where o = % gives the Gaussian, o = 1 gives the Cauchy case, and larger o yield heavier-tailed
stable distributions.

Remark 5.1. Solve function equations.

Solution 5.3. This example shows that the law of large numbers fails when its assumptions are not
satisfied. Let {X; }‘;‘;1 be i.i.d. random variables following the Cauchy distribution with probability
density function

1
= R.
f(x) o
We check three key properties.

(1) Expectation. Although the Cauchy distribution is symmetric about 0, the mean E[X;] does not
exist. Indeed, the integral

[iadsrae =2 [ 2 do = Liog1+03)] =
Rx x x_ﬂo T2 og %)), = oo
Hence E|X | = oo, and E[X] is undefined (it is not absolutely integrable).

(2) Divergent moments. Similarly,

21 _ L _
E[Xj]_/Rw(l—i—xQ) dx = oo,

so the variance does not exist either.

(8) Distribution of the sample mean. Let S,, = X1+ ---+ X,,. The characteristic function of
X1 8 )

o(t) =E[e"X ] ="M, teR.
By independence,

n

05, n(t) = E[e"5/"] = H [0/ = (g(t/m))" = (/)" = M.

Thus, ¢sg,, /n(t) = ¢(t), meaning

& 4 X1 for all n.
n

Hence the distribution of the sample mean is the same as that of each X;, and the sequence {S,/n}
does not converge to a constant. Both the weak and strong laws of large numbers therefore fail.

11



Solution 5.4. Let ¢(z) := h(0) — h(z) > 0. Then (0) =0, ¥(z) > 0 for z > 0, ¥'(x) = —h'(x)
on (0,00), and ' (0) = —h'(0) =: a > 0. Write

I(t) :== /OO @) gy = (0 /OO e @) dg.
0 0

Fiz e € (0,a/2). By continuity of ¢’ at 0, there exists 6 > 0 such that
a—e<yY(r)<a+e (0 <z <9). (1)
Split the integral:
[e'S) é [e's)
/ e @) gy = / e @) dy + / e W@ dy = 4 (t) + L2(t).
0 0 5
Tail estimate Since ¢ is increasing and ¥ () > 0,
oo
0< Lt) <= e~ (t=1)¥(9) / e V@) gy < Cect
5
for some C,c > 0.

Main part On [0,0] the function 1) is strictly increasing, hence a C* bijection onto [0,1(5)]. Make
the change of variables

y=tp(x),  z=z(y) = (y/t),
to get

1 t(9) y 1
hit) = ¥/0 @) ™

1 < 1 < 1
ate ™ Y(a(y) " a—e
Moreover, x4(y) = ¥~ (y/t) — 0 for each fized y as t — 0o, so w'(zlf(y)) — % By the dominated
convergence theorem,

By (1),

(0 <y < t(d)).

1
i — Yy = =
th_¥n tIl(t)—/O e dy .

Combining with the tail estimate,

Therefore

1 1 6th(O)
I(t) =m0 = -))= 1+o(1
( ) € at+0 t —th/(O) ( +O( ))?
which proves the claimed asymptotic.
Remark 5.2. Use the change of variables.

Solution 5.5. Recall that for a random variable X with moment generating function

M) =E[Y], A = log M(N),

12



the rate function (Legendre—Fenchel transform) is defined as

I(x) = ilelg{)\x — AN}

(1) Normal distribution X ~ N(u,c?).

M()\) = exp(u)\ + %UQ/\Z)7 AN = pA + Lo222.

Thus
I(z) = sup { A& — p) — 30°N*}.
AER
Mazimizing in A gives \* = (z — p)/o?, and
(x—p)®
I(x) 552 z €R.

(2) Exzponential distribution X ~ Exp(\) with pdf f(x) = Ae™>* for z > 0.

M) =E[™] = 125, 0<A A@6)= —1og(1 - z)

Then 0
I(x) =suplbx +log(l— — .
(@) 93{ s( A>}

Setting the derivative to zero gives

1

— / = / = — =
r—AN@)=0 = A(0) g Y
50 0* = X — L (valid only for x >0). Then
0* 1
- == A0 =1 :

Therefore
I(z) = 0"z — A(0") = (Ax — 1) — log(A\z), x> 0.

Since the exponential distribution is supported on [0,00),

Az —1—log(A\x), z>0,
I(z) =

—+o00, xz <0.

Note that I(x) attains its minimum 0 at x = 1/X, the mean of the exponential distribution.

6 Homework 6 (Sep 29th)

Solution 6.1. Ehrenfest’s model. Consider the classical Ehrenfest urn model with N identical
particles (or balls) distributed between two boxes (labeled A and B). At each discrete time step, one
of the N particles is chosen uniformly at random and moved to the other box.

13



Let X; denote the number of particles in box A at time t. Then {X;}i>0 is a Markov chain with
state space {0,1,2,..., N} and transition probabilities
N —i i

Piji+1)=—%—,  Plii-1)=x,

i=0,1,...,N.

These correspond respectively to moving a ball from B to A and from A to B.

Invariant (stationary) distribution. We seek m = (mg,71,...,7N) such that 1P = w. The
detailed balance equations (reversibility) are

7TiP(i,7;+1) :7Ti+1P(i+1,i),

which gives
P(iyi+1) N —1

Pli+14) sl

B N (N
T g =)

Normalizing so that Z?LO m; = 1 gives

N
mQN(,>, i=0,1,...,N.
1

Ti+1 = T4

Iterating from i = 0 yields

Interpretation. The invariant distribution is the binomial distribution Bin(N,1/2). Intuitively, in
equilibrium, each particle independently occupies either box A or B with equal probability 1/2. Thus

N
the probability of having i particles in box A is m; = ( )2_N.

]

Solution 6.2. Let {N(t)}i>0 be a (simple) Poisson process with rate A > 0, characterized by

(i) N(0) =0, (i) stationary independent increments,
(111) P{N(h) = 1} = Ah +o(h), P{N(h)>2} =o0(h) (h]0).

For fized t > 0 define the characteristic function of N(t):
¢u(u) == E[e™ND] yeR.

Using independent, stationary increments and the small-time behavior (i), for h > 0 small we
write, conditioning on the increment N(t + h) — N(t),

brin(u) = E[eiuN(t)E(eiu(N(t+h)—N(t)) | N(,g))} _ ¢t(u)E(eiuN(h)) .
By (iii),
B(eN00) = 1-PAN () = 0} + " B{N () = 1} + E(" ¥ N(h) 2 2) = 14+ A (e — 1) + o(h).

Hence 4
Pern(u) = d(u) = ¢e(u) (AR (™ = 1) + o(h)),
so, dividing by h and letting h | 0,
d ,
ﬁ@(u) = A" —1) ¢e(u), ¢o(u) = 1.

14



Solving this linear ODE gives

di(u) = exp{)\t (e™ — 1)}
To extract the distribution of N(t), expand:

di(u) = e Mexp(Ate™) = e M Z 7();:')71 e,
n=0

Comparing with the general form ¢i(u) = 3, 5o ™" P{N(t) = n}, we read off

()\t)n

n!

P{N(t) =n} =e M ., n=0,1,2,... |

Thus N (t) ~ Poisson(At).

Solution 6.3. Let X (t) be a CTMC on a countable state space S with generator Q = (g;;), where
gij > 0 forj #1i and q;; = — Zj# gij = —¢;. For a bounded (or suitable) function f : S — R define

hi(t) == Ef(X(1))], i€ S, t>0.

Equivalently, letting (P;)i>o0 be the transition semigroup, h(t) = Pif.

Fiz i and condition on what happens in the first small interval [0, dt]: with probability 1 — g; dt +
o(dt) the chain stays in i; with probability q;; dt +o(dt) it jumps to j # i. Using the Markov property
at time dt,

hi(t+dt) = EX[f(X (¢ +dt)] = (1 — g d)E'[fF(X ()] + Y i dLEI [f(X(1))] + o(dt)
J#i
= (1= qdt)hi(t) + Y _ qij dt hj(t) + o(dt).
J#i
Hence hi(t+ dt) — hi(t
e di ) _ ;qij(hj(t) —hi(t)) +o(1) = j%% hj(t) + o(1),

because q;; = — i Qij - Letting dt | 0 we obtain the backward Kolmogorov equation

jeS

%hi(t) =D aihi(t),  hi(0) = f(0).

In vector form, with h(t) = (hi(t))ies and f = (f(7))ies,

d
Sh(t) = Qh(t),  h(0) = f.

Solution 6.4. Let each trial (coin toss) occur every T units of time with success probability p. Let
N(t) be the number of successes by time t. Then

N(t) ~ Binomial (n _ ; p) . P{N(t) =k} = (t/ T) pE(1 = pyHmF,

Now take the limit p — 0, 7 — 0 with P = A>0. Letn=1t/T7 — o0, so np=At. Then
T

k



Hence .
At
MN@:k}»(”%%ﬂ k=0,1,2,...

which is the Poisson(At) law.

Conclusion: Under p,7 — 0 with p/T — X, the binomial counting process converges to a Poisson
process with rate X.

Solution 6.5. Let {N(t)};>0 be a (nonhomogeneous) Poisson process with time-varying rate A(t) >
0 in the sense that for h | 0,

P{N(t+h) — N(t) =1} = A(t) h + o(h), P{N(t+ h) — N(t) > 2} = o(h),
and the increments over disjoint intervals are independent.

¢
State probabilities. Let p,,(t) := P{N(t) = m} and set the cumulative rate A(t) := / Au) du.
0

The forward equations are
p;n(t) = _/\(t) pm(t) + )‘(t) pm—l(t)a pm(O) = 1{m:0}-

Solving (e.g. by induction or generating functions) yields the Poisson law with mean A(t):

A@)™
pm(w::e*A“WAQ%f, m=0,1,2,...
m.

7 Homework 7 (Oct 27th)

Solution 7.1. Estimate R = E,,[w(X)] with w(z) = exp(x?(1/b—1/a)), mp(z) o e’zz/bl[LU] (x),
[L,U] = [-10,10].

Algorithm 1 Metropolis—Hastings targeting m, with uniform independence proposal
Require: a > 0,b > 0, total steps N; L+ —10, U < 10

1: draw xg ~ Unif[L, U]
2: fort=1.. Ndo
3: propose x’ ~ Unif[L, U] > g(a'|z) = Unif[L, U]
4: o < min(1, exp(— (z"* — 27_,)/b))
!/
5: draw u ~ Unif(0,1); x4 < o vsa

Ti_1, else

=]

N
=~ 1
: Output: R = N ;exp(:ﬂf(l/b —1/a))

Choose sample size N = 200000, and the results are as follows.

Estimated R = 0.9127813562
True R = 0.9129045361
Abs. error = 1.232e-04
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Solution 7.2. Check the detailed balance condition for Metropolis and Glauber dynamics.

For Gibbs distribution w(c) = Z~ e~ PH() with symmetric proposal Q(c — o'), the detailed balance
condition requires
n(0)P(oc — o) =n(c")P(o’ — o).

(1) Metropolis: Ay;(c — ') = min{1,e P2} where AH = H(c') — H(c). Then

Ay (o — o) _ BAH _ m(o’)
Ay (o' — o) (o)’

so detailed balance holds.
(2) Glauber: Ag(oc — o) = (1 + P21 ~L Similarly,

Ag(o — o) _ o BAH _ LO'/)
Ag(o’ — o) 7(o)’

thus Glauber dynamics also satisfies detailed balance.

Solution 7.3. Check that the Markov chains set up by Metropolis and Glauber dynamics for the
Ising model are both primitive.

In the single—spin—flip scheme, any configuration o can reach any o’ by flipping spins one by one
(finite number of steps). Each transition has strictly positive probability:

Qo —0d')>0, Ay>0, Age(0,1),

hence P7(o,0') > 0 for some finite 7. Therefore, both Metropolis and Glauber dynamics define
primitive Markov chains.

8 Homework 8 (Nov 17th)

Solution 8.1. The state space is & = X x{1,...,L}. For s = (z,i) and s’ = (y,j), the transition
kernel is

P((z,4),(y,4)) = a0 Ljmiy Ti(,y) + (1 — o) Liyeay [a(i, 5)as; (2) 1y + ri(2) 1= ],
where T; is the MCMC transition at level 1,
a55(x) = min {1, WW)} ,
Tst (.’E, Z) CV(Z, .7)

and the remaining—stay probability is

ri(x)=1- Z a(i, k)ak(x).

ki

Solution 8.2. The state space is . = Z L. Forx = (z1,...,z1) and y = (y1,..-,y1),

L-1

L
1
P(x,y) = ao [ [ Te(we, ye) + (1 — ap) 71

(=1 i
where Ty is the MCMC kernel at temperature level ¢,

a;(z) = min {1, i (Tig1)Tig (2:) } ,

Wi(iﬂi)m'ﬂ(xiﬂ)

[ai(x) 1{y:$(7‘,<—>i+1)} + (1 - az(x)) 1{y:w}] y
1

and £ denotes the vector obtained by swapping the ith and (i + 1)th coordinates of .
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9 Homework 9 (Nov 17th)

Solution 9.1. As 8 — oo, the Boltzmann distribution

m5(z) oc e AV (@
concentrates on the set of global minimizers of V.
If V has finitely many isolated minimizers {1, ..., Ty}, then

1 m
k=1

i.e. the limiting distribution is the uniform distribution over all global minimizers.

10 Homework 10 (Nov 17th)

Solution 10.1. Let

1 z?
Wz, t) = it exp <_M> .

Direct differentiation gives

ow x? 1 Pw x? 1

(-~ pw, (L __ S \w

ot (4D2t2 2Dt) ’ Ox? (4D2t2 2Dt)
Thus W = DO?*W. Ast — 0, W(x,t) — 6(z) in distribution.

Solution 10.2. The reflecting-barrier solution is

Wr(xvt; 'Tl) =

[eﬂﬂ/(wt) I 67(21;171;)2/(41:)@} _

1
Var Dt

Each term solves O,W = DO?>W, hence the sum does too. Initial condition: W,(x,0) = §(x).
Neumann boundary:
GIWT(xl,t) =0

because the two exponentials have opposite derivatives at x = x1.

Solution 10.3. The absorbing-barrier solution is

Wz, t;x) = [67“"2/(4[)” — 67(2””1*””)2/(413”} )

1
Var Dt

It satisfies O, W, = DO2W, since each term does. Initial condition: W,(z,0) = &(z). Dirichlet
boundary:
Wa (1’1,t) = O

because the two terms cancel at © = x7.

11 Homework 11 (Nov 17th)

Solution 11.1. We have E[¢] =

2 _1_1
$—3=35#0, hence

18



Thus g
N _ 2Nt
t No

has mean
E[Z] = 3t N'~°.

To obtain a finite nontrivial limit we must have 1 — a =0, i.e. « = 1. Moreover,

z) =

= %(%NHFO(\/N)) — 3t

Hence the limit process is Z; = %t.
Solution 11.2. (a) Since Wy ~ N(0,t), we can write Wy L IW, with Wy ~ N(0,1). Hence
EW} = PEW} =2 -3 = 3t%.

(b) Let X = W, — Wy + W,. Then EX? = Var(X) and, for a Wiener process, Cov(W,, W,) =
min(u,v). Thus

E(W; — Wy + W,)? = Var(X) =t + s + z + 2[ — min(¢, s) + min(¢, z) — min(s, 2)].
Solution 11.3. Since X ~ N(0, A), its density is

1 15,
Ix(@) = BTz der ()72 eXp(_z”“"TA 19“) '

Then
1

L 141
)72 det (A)172 /n exp<—2:c (A +B)x> dx.

Using the Gaussian integral [, e~3% Magy — (2m)™/2 det (M) =2 for M = 0, we get

Eexp(—3X"BX) =

Ee~ 2% BX = det(A)"Y/2det(A~! + B) /2.

Since det(A™1 + B) = det(A~1) det(I + AB), this simplifies to

Ee~2X'BX — det(I + AB)" /2|

Solution 11.4. We show that (1)-(3) are equivalent to (1°)—(3’).

(1)-(3) = (1’)—(3’). Assume (Wy)i>0 is a Gaussian process with EW; = 0 and Cov(W,, W;) =
sAt.
(2’) For any s,t > 0, the increment Wy — Wy is Gaussian (since the process is Gaussian) with
mean
E(Ws+t - Ws) =0,

and variance
Var(WH_t — Wg) = Var(VVSH) + Var(VVs) -2 COV(Ws+t, Wq) = (S + t) +s—2s=t.

Hence Wg s — Wy ~ N(0,¢).

(1) Let tg < t1 < -+ < t,, and set Xog = Wy,, X = Wy, — Wy, _, for k > 1. For i # j one
checks, using Cov(W,, Wy) = s At, that Cov(X;, X;) = 0 (a simple computation with s At). Since
the vector (Xo, ..., X,) is Gaussian and its covariance matriz is diagonal, the X; are independent.
Thus (1°) holds. Condition (3°) is identical to (3).
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(1°)-(8’) = (1)-(8). Assume now (1°)-(%’).

From (2°) with s = 0 we get Wy ~ N(0,t), so EW; = 0 and Var(W;) =t. By (1°) the increments
Wi, Wiy = Wegy oo o, We, — Wy, are independent and by (2°) each increment is Gaussian. Hence
any finite vector (Wy,,...,Wy,) is a linear combination of independent Gaussian random variables,
so0 it is multivariate Gaussian. Thus (Wy) is a Gaussian process.

To compute the covariance, let 0 < s <t. Write Wy = Wy + (W, — Wy). Then

COV(W97 Wt) = COV(WS) Ws) + Cov (W97 Wt - WG)
By (1’) the increment Wy — Wy is independent of W, so the second covariance is 0, hence
Cov(Ws, W) = Var(Wy) = s.

For t < s the same argument gives Cov(Ws, W) = t, so Cov(W,, Wy) = s At. Finally, (3) is the
same as (3°). Thus (1)-(3) hold.

12 Homework 12 (Dec 1st)

Solution 12.1. Let (Wi)i>0 be a Wiener process.
(i) Yy = ﬁWCt. For 0 <s<t,

1
Ve
and the increments are independent by those of W. Continuity follows from that of W. Hence Y is

a Wiener process.

(i) Zy =W(T) = W(T —t). For0<s<t<T,

Y, -Y, = (Wct_Wcs)Nf/V(07t_5)a

Zy— Zg=W(T —58) = W(T —t) ~ N(0,t—5),

with independent increments since they correspond to disjoint time intervals of W. Continuity is
inherited from W, so Z is a Wiener process.

(#i) X, = tWi,, Xo =0. Fors,t e (0,1],
11 .
Cov (X, Xt) = st Cov(Wy /s, W1y) = stmm{s, t} = min{s,t}.

Thus (X:) is a centered Gaussian process with covariance Cov(Xs, X¢) = min{s,t}, the same as
Brownian motion. Hence X has the same finite-dimensional distributions as (W) and, with Xo =0,
is a Wiener process.

Solution 12.2. Let W be Brownian motion and let A = {0 = tg < -+ < t,, =t} be a partition.
Define

m—1

QP = (Wey, — W)™

k=0
Write AWy := Wy, . — Wy, and Aty ==ty 11 —ty,. Then the increments AW}, are independent and
AWy ~ A (0, Aty).

Proposition 2.2. We have E[AW}?] = Aty,, hence

=

E[Q2] =Y At =t.
k=0
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Moreover,
m—1

Qf —t=Y (AW} — Aty),

k=0

and the summands are independent with mean 0, so

m—1

Var(AWE).
k=0

If X ~ 4(0,0%)
Var(AW?) = 2(Aty)?, hence

m—1
E(QA =2 (At)?
k=0

In particular, since Y_(At)? < |A]Y. Aty = |Alt, we get E(QS
QP —tin L2,

then E[X*] = 304, so Var(X?) = 30* — 0% = 20%.

With o2

= Aty this gives

—1)2 <2t|A| = 0 as |A] = 0, i.e.

HW2 sharpening (dyadic partition). Fixt >0 and set t, = k27"t for k=0,1,...,2". Define

2" —1

Yi(t) = Z (Wtk,H - Wtk)2'

k=0

Applying Proposition 2.2,

By Chebyshev, for any e > 0,

P(IYa(t) — 1] > &) < Yrnl0)

2

Since Y7, 27" < 00, Borel-Cantelli implies

P(|Y,(t) —t| > € i.0.) =0 for every e > 0.

Hence |Y,(t) — t| — 0 almost surely, i.e. Yy (t,w) =t a.s.

t2

Var(Y, (1)) = E(Y, (t) — 1) = 2%31 (2n)2 _ 227

n "

Solution 12.3. Let C[0,00) be the space of real-valued continuous functions on [0,00). For x,y €

C[0,00) define

o0
=Y 2" (el A1): Wflloogon = sup O]
n=1 te[ovn]

(A) Completeness. Let (x) be a d-Cauchy sequence in C[0,00). Fiz m € N. We claim that (zy)

is Cauchy in the uniform norm on [0, m].

Indeed, for any € € (0,1) choose K such that for all k,¢ > K, d(xk, z¢)

27m(||1'k — fooo,[O,m] A 1) < d(l’k,xg) < 27 Mg,

hence (||zr — 24| 0o, j0,m A 1) < €. Since € < 1, this implies

lzx — Telloo,j0,m] < &

21
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s0 (xy) is Cauchy in (C[0,m], | - [|oc,jo,m]). Because (C[0,m],|| - ||o) is complete, there exists a
continuous function ™ € C[0,m] such that

lek — x(m)||m7[07m] —0 ask— oo

Compatibility. If m < r, then on [0,m] we have both xp — =™ wuniformly and x), — ™) wni-
formly, hence (™) = (™) on [0,m] by uniqueness of uniform limits. Therefore the family {z(™} is
consistent.

Define z : [0,00) — R by setting x(t) := ("™ (t) for any m > t. This is well-defined by
compatibility, and x is continuous on each [0,m], hence continuous on [0,00), i.e. x € C[0,00).
Convergence in d. Fiz ¢ > 0. Choose M so that ) _,,27" < ¢e/2. For each 1 < n < M, since
|z — 2[|oo,j0,n] — O, choose K such that for all k > K,

2 — 2|loo,f0,n] < % foralll <n < M.
Then for k > K,
= - e & €
d(E,LC: 27" ([[z — Tloo n/\]- < 27" | — ZT||oo,[0,n] T 2—n§7 27"+ - <e.
(2k, ) nz::l (e = oo o A1) nz::l 21 = 2loo,f0,n] n;w 5 nz::l 5

Hence z, — x in (C[0,00),d), so the space is complete.

(B) Separability. Let 9 be the set of functions f € C[0,00) such that: for some N € N,

o [ is piecewise linear on each interval [j,j + 1] for j = 0,1,...,N — 1, with breakpoints at
rational points in [0, N] and values in Q;

e f(t)=0 forallt > N.

Then P is countable: it is a countable union over N of functions determined by finitely many rational
breakpoints and finitely many rational values.

We show 2 is dense in (C[0,00),d). Let x € C[0,00) and ¢ > 0. Choose M such that
Yo 27" < €/2. On [0, M], by uniform continuity of x on the compact interval [0, M], there

exists a partition 0 = sg < -+ < s, = M fine enough so that the piecewise linear interpolation f of
x on this partition satisfies

2 = flloofo.am < 0

where & > 0 will be chosen. Approximating the finitely many breakpoints s; by rationals and the
finitely many values x(s;) by rationals, we obtain a piecewise linear f € 2 (also set f(t) = 0 for
t > M) such that

llz — f||oo,[o,M] <4
Then for 1 <n < M, ||z = flloo,jo.n) < |7 = flloo,f0,01) < 0, hence

M
dz, f) <Y 275+ 3 2*”§5+%.
n=1

n>M

Choose 6 = £/2 to get d(z, f) < e. Thus 2 is dense, and the space is separable.
Combining (A) and (B), (C[0,00),d) is a complete, separable metric space.
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Solution 12.4. Let (Wy)y>0 be a Brownian motion and fix 0 < s < t. Put

s+t
=

A=W, — W, B =W, —-W,,.

By independent increments, A and B are independent, and
A~ AN (0,m—s), B~ A4(0,t —m).

Smcem:%, wehavem—s:t—m:%, hence

A B iid. w(of;s) .

Now note that
W, =Ws+ A, W,=W,+ A+ B.

Condition on the event {Ws = x, Wy = y}. Then A+ B = y—x is fized, and we need the conditional

law of A given A+ B =y — x where A, B are i.i.d. centered Gaussians with variance o2 := t_TS
For i.i.d. A,B ~ 4 (0,0?), the vector (A, A+ B) is jointly Gaussian with

E[A]=0, E[A+B]=0, Var(A) =02 Var(A+ B)=20? Cov(4,A+ B) = Var(A) = o>

Hence, by the Gaussian regression formula,

_ Cov(A,A+ B) Cov(A,A+ B)?\ c a*
A|(A+B)—C~J/<Var(A+B) e, Var(A)_—Var(A+B) =N 5 5 )

Taking c =y — x and 02 = t_TS gives

— t—
A|(A+B):y—;v~/(y L S).
Therefore, since Wy, = Wy + A and Wy =z,

W,"L|(Ws:x7Wt:y)NJV<x+y;I7 t_8> :JV(W’ t—5>.

This is exactly the desired conditional distribution.

13 Homework 13 (Dec 16th)

Solution 13.1. Let A = {0 =ty < t; < --- <t, =t} be a partition and write AW; := W,
tittita
S

i+ Wtj ’
Atj = tj+1 - tj, and tj+% =
(1) Midpoint approximation. Use the identity (split term method)

(AW;)? = (W?

ti+1

- ”ti-) - 2”tjA”j = 2”t.+;A”j + (”tj+1 - 2”t.+; + ”tj)A”j'
IT5 JTy
Equivalently, the cleanest split is

1 1
Wi, AW, = E(Wi‘H -W2) - i(WtM -We ., = wi),

i+
which follows by expanding squares with a = Wy, ., —W;
L(a+0b)(a—0b)+ %(VVEJ,+1 - WtQ,)

b= Wtw% —W4, and using Wtj+% AW; =

4l
i+
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Summing over j yields

n—1 n
1

> Wi, AW, = 5(Wt2 —W3) +

=0 j

I
-

W (W =W, 2]

DO =
I
o

Since Wy = 0, it remains to show the last sum goes to 0 in L?. Let

n—1

Rp = Z {(Wtﬁ% — Wtj)2 - (Wi — Wtj+%)2:|'
j=0

For each j, the two increments are independent A (0,At;/2), so the difference has mean 0 and
variance

At 2
Var((WtH% — Wtj)2 - (Wi, — WtH%)Q) — 2Var((Wtj+% — Wtj)2> =2. 2(7]) = (At;)?,

using Var(X?) = 20* for X ~ A4(0,02). Moreover, for different j these terms are independent
(disjoint increments), hence

n—1 n—1
2 2
— — N2 < R .
E[RA] = Var(Ra) ]E O(Atj) |A| JE . At; = |Alt —>| o 0

Therefore Ra — 0 in L?, and so

1 J+1 J L2 2

n—1

1
YW (Wi, —Wey) — WP
j=0

(2) Right endpoint approximation. Use the split
Lo 2 1 2
WtHlAWj = i(Wthrl - Wtj) + §(AWj) )
since Wy, ., = Wy, + AWj. Summing over j gives
n—1 1 1 n—1
_ 2 2
jz:;) Wi, AW, = §Wt + 9 ;(AWJ) :

By Proposition 2.2 (quadratic variation), Zj(AWj)2 —t in L? as |A| — 0. Hence

n—1
1, t
2 Wi Wiy =We) 5 gWi+ 5

This proves the claimed limits in L?().
Solution 13.2. Notation. Define the (probabilists’) Hermite polynomials

n 2 a" —z2
hn(x) = (_1) e /dein(e /2)’
and for a > 0 define

T

H,(z,a) := a”/th<ﬁ>, H,(z,0) := z".
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(a) Generating functions.
First prove

= u?
Z Fh"(x) = exp <u33 — 2) .

n=0

Let G(u,z) := exp(uxr — u?/2). Using the definition of h, and Taylor expansion,

2 2 2 Ry
e 2G(u,z) = exp(um T u) = eXp(_(xu)) '

Differentiate in u at uw = 0:

%(esz/QG(u,x))

B 87" 3 (x —u)?
u=0  Oun xp 2

13

%G(u, Z‘)

Hence the Taylor series of G in u yields the desired generating function.
For a >0,

Multiplying by et /2 gives

= hp(2).

u=0

n

n! n!

Va Va 2

Also Hy(z,0) = z™ is consistent since the right-hand side becomes €** at a = 0.

(b) PDE and derivative identities.

Let
> .n 2
F(u;z,a) := 5_0 %Hn(as,a) = exp (ux - a;) .

Differentiate F:
0,F =uF, 0, F =u’F,  0,F = —%F.
Thus ) 1 1
(58“ +0,) F = (§u2 - 5u2)F = 0.

Comparing coefficients of u™/n! gives, for each n,

19> 0
———+ — | H =0.
(2 ox? + 3a) n(@,0) =0
Also, from 0, F = uF,
;::0 H&;Hn(m, a) = unz::o HHn(x, a) = nz::l e 1)!Hn,1(x, a).
Comparing coefficients yields
0

%Hn(x, a)=nH,_1(z,a).

(¢) Relation (3.3) via Ité + induction.
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Let W be Brownian motion and define the iterated It6 integrals

t oty -
In(t)::// / AW, - dWh,  To(t) = 1.
0 JO 0

Note the recursion (by definition/Fubini for stochastic integrals)

t
I,(t) :/ I—1(s) dWs, n>1.
0
Now apply Ité’s formula to the space-time function (z,a) — H,(x,a) at (z,a) = (W, t):
1
dH, (Wi, t) = 8y Hyy (W, t) AW, + (@Hn(Wt, ) + 50 Ha (W, t)) dt.

Using (b) with a =t gives 0, H,, + %amHn =0, hence
dHn(Wt7t) = 3mHn(Wt,t) th = an_l(Wt,t) th

Since H,(Wp,0) = H,(0,0) =0 for n > 1, integrating yields
t
H, (Wi ) :n/ Hy 1 (W, ) dW,.
0

Divide by n!:

1 |
aJrarn(wt,t)f/o e (W) W,

Induction. For n =0, éHo(Wt,t) =1=1Iy(t). Assume ﬁHn,l(Wt,t) = I,_1(t). Then the

previous display gives .
%Hn(Wt,t) :/0 Lo 1(s)dW, = L, (2).
Thus for alln > 0,
I,(t) = %Hn(Wt,t).

Finally, using the definition H,(z,a) = a™/?h,(x/\/a) with a = t,

1 W
— — /2 ot
I,(t) =] t hn(ﬂ) ,

which is exactly relation (3.3).

Solution 13.3. (a) dX; + %HXt dt = %_Hth. Take the integrating factor pu(t) = 1+t and set
Yi = (1+t)X;. Then
dY; = (1 +t)dX, + X, dt = dW,,
so Yy =Wy (since Yo =0). Hence
1+t

Xy

t+ Xy dt =e™ t. Take the integrating factor p(t) = €' and set Yy = e* Xy. en
b) dX; + X, d tdW,. Take the i ing f t d Y; tX,. Th
dY; = e'dX, + et X, dt = dWy,
so Yy = Xo+ W;. Hence
Xt = Bit(XO +Wt)
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Solution 13.4. Consider the d-dimensional OU SDE
dXt = AXt dt + O'th,
where A € R4 g ¢ RX™ and (W) is m-dimensional Brownian motion. Let

mye 1= E[Xt], Zt = COV(Xt) = ]E[(Xt - mt)(Xt - mt)—r}'

Mean. Taking expectation in the SDE (the Ité term has zero mean) gives

d
amt = Amt.

A stationary mean mey, must satisfy %mt =0, hence

Amy = 0.

Covariance. Let My := Xy —my. Then dM; = AM; dt + o dW;. Apply It6 to MM, :
d(MM]T) = (dM)M," + My(dMy) T + (dMy)(dM;) T
Using dMy = AM, dt + o dW,; and (dW,)(dW})T = L, dt,
(dM)(dM;)T = o dW, dW," 0" = oo " dt.

Taking expectations and noting E[dW;] = 0 yields the Lyapunov ODE

d

%Zt = AZt + EtAT + O'O'T.

A stationary covariance Yo, must satisfy %Et =0, hence

AL + AT 400" = 0.

Therefore the stationary mean and covariance must satisfy

Ames =0, AV o + SooAT 400" =0
| |

(the second equation is the continuous-time algebraic Lyapunov equation).

Solution 13.5. Let A ={0=1¢y < --- < t, =T} and define the backward (right-endpoint) integral
by the Riemann sums

T n—1
/0 flt,w) *dWy = Iiilgoj; f(tj1,w) AW, AWj =Wy — Wy,

whenever the limit exists (e.g. in L?). Consider the backward SDE

X

J+1

- th = b(th R tj) Atj + U(th+1 R tj+1) AWj, Atj =t — t.
Rewrite the stochastic term by expanding o(Xy,,,,tj11) around (Xy,,t;):

U(thJrl’tj-‘rl) = G(th7tj) + 8$U(th’tj) (th+1 - XtJ) + 0]7(|th+1 - th |) + O(At])v
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so multiplying by AW; and using X, — Xy, = Op(\/At;) gives
O'(thJrl R tj+1) AWJ = O'(th,tj) AW] + 6xa(th R tj) (th+1 — th)AWj + Op(Atj).

Substitute Xi, , — Xy, = b(Xy,,t;)At; + 0(Xy,,,,tj41)AW; into the product term; the drift part

contributes O,,(Atj/z) and is op(At;), while the leading contribution is

j+1

(X, 10— Xe) )JAW; = 0(Xe, 0 t01) (AW))? + 0, (Aty) = 0(Xe,, 15) (AW))? + 0, (AL).
Hence
0(Xp, 1o tir1) AWy = o(Xy,, 1)) AW, + 0,0(Xy, )0 (X, 1) (AW;)? + 0,(At;).
Plugging back into the increment equation,
Xi,n — Xo, = b(Xy, t))At + 0( Xy, , ) AW + 8,0 (Xy, 1) (X, , t5) (AW;)? + 0, (AL;).

Summing over j and letting |Al — 0, we use the quadratic variation (AW;)? = T and, more
generally,

T
> 0e0(Xy, )0 (X, 1) (AW;)? — / 0,0 (X, t)o(Xy,t) dt
. 0
J

(in probability, or in L' under standard growth/Lipschitz conditions). The term > 0p(Atj) — 0.
Therefore the limiting continuous-time equation is

dX, = (b(Xt,t) + 9,0(Xy, 1) a(Xt,t)) dt + (X, t) AWy,

i.e. the backward SDE dX; = b(Xy,t)dt + (X, t) * dWy is equivalent to the Ité SDE with drift
correction 0,0 - 0.

14 Homework 14 (Dec 16th)

Solution 14.1. Let X; € R solve a diffusion driven by an m-dimensional Brownian motion. Write
o(x,t) € R>™ with entries o (x,t), and set

m
a(z,t) := oz, t)o(z,t)", a;; = Zaikajk..
k=1

Let p(x,t) be the transition density of X; (assume smooth and decaying so integration by parts is
justified). For a test function ¢ € C°, define (py, ) == [pa 0(x)p(z,t) dx.

1) Stratonovich SDE = PDE (2.11). Assume the Stratonovich dynamics
dXt = b(Xt, t) dt + U(Xt, t) o th

The Stratonovich generator acting on ¢ is (chain rule form)

m

1
Lo = b; 0y + 3 ;(Gk V)20 =b;0ip + 3 Oik (o jk0;¢),

(using Einstein summation over repeated indices i,5 = 1,...,d and k = 1,...,m). By the Kol-
mogorov forward equation in weak form,
d

1
@@t,@) = (p, L) = /Pbiaz’@d$+ 3 /pUz‘kaz'(O’jkaﬂP) dz.
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Integrate by parts: first term
/pbz&w dr = —/wai(bip) dx.
For the second term, integrate by parts twice:

/paikﬁi(ajkajgo) dr = —/ajk(?jgo Oi(oikp) de = /cp@j(ajk 8i(aikp)) dx.

Hence J L
G = [ -0 + 5005 outoun) | o

Since this holds for all ¢, we obtain the PDE
1
Op + 0i(bip) = 3 3j(0jk ai((’ik-p))-

In vector notation this is exactly

atp+ V- (bp) = %Vm . (0 V- (Up))

with (Vg - (0 Vg - (0p))); = 0j(010i(0ikp)), which is (2.11).
2) Backward (right-endpoint) integral = PDE (2.12). Assume the backward SDE

dX; = b(X,t) dt + (X4, t) x dWh.
From the earlier conversion (backward — Ito),
dX; = b( Xy, t) dt + o (X, t) AWy, by = b; + O0ij Ok,
(where O = 0/0xy, and we sum over j =1,...,m). For the Ito SDE, the (Ito) generator is
Lo = bidip + %aijaij@a ajj = OOk

The forward (Fokker—Planck) equation is the adjoint:

1
Oyp = —0;(bip) + 3 03 (a;p).

Substituting lN)i = b; + Oroijor; and a;; = o0k gives

1
Op + &{(bi + akoijgkj)p} =5 aij(aikajk p)

which is exactly (2.12) (with 0;; = 0;0;).
Remark 14.1. Write the standard SDE and calculate the generator.
Solution 14.2. Consider the OU SDE on R¢

dX; = BX,; dt + o dW4, a:=o00' € R4

and assume the invariant density is Gaussian m = A (0,%) with 3 > 0.
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Step 1: Fokker—Planck equation and probability current. For an Ité diffusion dX; =
b(X;) dt + o dW; with constant a = oo, the density p(x,t) solves

1
Op(z,t) = =V - (b(x)p(x,t)) + §V . (an(x,t)) = -V -J(z,1),
where the probability current is
1
J(x,t) == b(x)p(x,t) — ian(x,t).

Here b(x) = Bz, so at stationarity (p =),

Step 2: Detailed balance < J = 0. Detailed balance (reversibility) means the net flux between
any two states cancels; for diffusions this is equivalent to vanishing stationary current:

‘ Detailed balance < J(z) = 0. ‘

Step 8: Compute Vr for 1 = A4 (0,%). Up to a constant,
I 1w
m(x) = exp —35% X,

Hence
Viegn(z) = —¥ 'z, Vr(z) = n(x)Viegn(z) = —X ten(x).

Step 4: Convert J =0 into a matrixz identity. Substitute the gradient into the current:
1 4 1 4
0=J(z) = Bxn(z) — ia(—E rr(z)) = (B + gaE )xw(m)

Since this holds for all x € R? and 7(x) > 0, we obtain

1 1
B+§a2*1 -0 — B= —iczE*1 — la=-2B% |

This is the detailed balance condition in matrix form.

15 Project 1

15.1 Introduction and Setting

The Potts model is a fundamental generalization of the Ising model in statistical mechanics, in
which each lattice site can occupy one of ¢ discrete states. It plays a key role in the study of phase
transitions and critical phenomena, especially in two-dimensional systems.

In this project, we investigate the phase transition behavior of the two-dimensional ¢-state Potts
model on a square lattice with periodic boundary conditions. The system is simulated using the
Metropolis Monte Carlo algorithm, and various thermodynamic quantities are measured near the
critical temperature.
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The Hamiltonian of the Potts model is given by
H(o)=~JY 000, —hY oi, (2)
(i,5) i

where o; € {1,...,q} denotes the state at lattice site i, 00,0, is the Kronecker delta, J is the
nearest-neighbor interaction strength, and h is an external magnetic field. The sum (i, j) runs over
all nearest-neighbor pairs.

Throughout this study, we focus on the case ¢ = 3 with the following parameter settings:

e Lattice size: N x NN square lattice with N = 100,

e Number of states: ¢ = 3,

Interaction strength: J =1,

Boltzmann constant: kg =1,

External field: h = 0 unless otherwise specified.

These choices allow us to systematically explore the thermodynamic behavior and phase transi-
tion properties of the two-dimensional three-state Potts model.

15.2 Question 1

Model 2D g¢-state Potts model on an N x N square lattice (PBC), coupling J. Each site s;; €
{0,1,...,¢—1}.

e Parameters: N =128, ¢=3, J =1.
e Temperature scan: T € [0.5,1.5] (11 points), 8 = 1/T.
e Initialization: i.i.d. random states on the lattice.

e Metropolis sweep: repeat N2 times: pick (i,7) uniformly, propose s;; # sij uniformly from
the other ¢ — 1 states, accept with prob. min{1, e #4F1,

e Energy: H =—-J3_,, 1[s; = s,] (count each nearest-neighbor bond once).
e Thermalization: nyerm = 20000 sweeps per T
e Sampling: ngample = 50000 sweeps per T'; record H every k = 10 sweeps (Nmeas = Nsample/k)-

e Observables (per Sit6)1
<11 > /é 2 v ELI'(]] )
u = W, Cc = 72

Results Figure 1 shows the internal energy per site u and the specific heat ¢ of the 2D ¢ = 3 Potts
model as functions of temperature.

The internal energy decreases monotonically with decreasing temperature. At high temperatures
the system is disordered, while at lower temperatures spin alignment becomes favorable, leading to
a rapid drop in u. A noticeable change in slope occurs near T ~ 1.

The specific heat exhibits a clear peak around 7" ~ 1, indicating enhanced energy fluctuations
and signaling a thermal phase transition. Due to the finite lattice size, the peak is smooth and finite.
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2D 3-state Potts: Energy 2D 3-state Potts: Specific Heat
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Figure 1: Internal energy (left) and specific heat (right) of the 2D ¢ = 3 Potts model as functions of
temperature.

15.3 Question 2

Model 2D g¢-state Potts model on an N x N square lattice (PBC), coupling J, with an external
field h favoring a reference state syt (here syt = 0):

H=-JY 1fsy =s,] — h> 1[so =swe], 52 €{0,1,...,¢—1}.
(zy) z

e Parameters: N =128, g =3, J =1, sy = 0.

e Scan: T € {0.5,1.0,1.5}, h € [-2,2] (21 points), 8 = 1/T.

e Initialization: i.i.d. random states.

e Metropolis sweep: repeat N2 times: pick z uniformly, propose s’ # s, uniformly from the
other ¢ — 1 states, accept with prob. min{1,e=#4F} (including interaction + field).

e Thermalization: niyerm = 8000 sweeps per (T, h).
e Sampling: ngample = 20000 sweeps per (T, h); record every k = 10 sweeps.
e Observable: 0, = 1[5, = 5|, M =) 0,, and

M
m = <N—2> €1[0,1] (baseline m = 1/q by symmetry at h = 0).
e Continuation: when scanning h, the final configuration at one h is used to initialize the next
h (otherwise re-randomize at each h).

Results Figure 2 shows the magnetization m = (M)/N? as a function of the external field h for
different temperatures.

At h = 0, the magnetization is close to the symmetric value m = 1/q¢, indicating no preference
among Potts states. As h increases, the field favors the reference state and m increases monotonically.
This response becomes sharper at lower temperatures: for T' = 0.5 the magnetization rises abruptly,
while for higher T' the curve is smoother due to stronger thermal fluctuations.
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2D 3-state Potts: magnetization vs field (favor state 0)
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Figure 2: Magnetization m = (M)/N? versus external field h for the 2D ¢ = 3 Potts model at
different temperatures. The dashed line indicates the symmetric value m = 1/q.

15.4 Question 3
Model 2D g-state Potts model on an N x N lattice (PBC), ¢ = 3, J = 1, zero field:
H=-J> 1[s , s, €{0,1,2}.
(zy)
e Scan: T € [0.5,1.5] (11 points), = 1/T.
e Update: Metropolis sweeps (each sweep N? proposals).
e Thermalization: nyerm = 8000 sweeps per T'.
e Sampling: ngample = 20000 sweeps; measure every kine = 20 sweeps.
e Indicator: o, = 1[s; = Syef] With sy = 0, m = (o).
e Correlation estimator: for k =1,..., N/2,

22 Z Uxay ), Sy(k) ={z L ké,, x £ ké,}.

T y€Sy(k)

e Fit: estimate £ from I'(k) =~ Loe */¢ by a linear fit of logT'(k) over k € [kmin, kmax] With
kmin = 47 kmax = N/2

Results Figure 3 shows the correlation length £ as a function of temperature for the 2D ¢ = 3
Potts model at zero field.

The correlation length increases rapidly as the temperature approaches 7'~ 1 from both sides,
indicating the development of long-range correlations near the critical point. Away from this region,
& remains finite and small, corresponding to short-range order in both the high- and low-temperature
phases. The finite peak of £ is due to the finite lattice size.

15.5 Question 4

Data Specific heat ¢(T') and correlation length £(T') obtained from previous simulations of the 2D
q = 3 Potts model.
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2D 3-state Potts (h=0): correlation length vs T
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Figure 3: Correlation length £ as a function of temperature T'for the 2D ¢ = 3 Potts model at zero
external field.

Critical temperature: fixed to T* =1

Reduced temperature: ¢ = |1 — T/T*|.

Selection: use all valid data points with € > 0 and finite ¢, (no scaling window imposed).

Scaling ansatz:
cle) ~ e 7, £(e) ~ e 0,

e Fit: linear regression on log-log data, logy = a+bloge, with exponents v = —b. and § = —be.

Specific heat scaling (all data) Correlation length scaling (all data)
® data (all valid points) [ ] [ ] ® data (all valid points)
1.09 fit, gamma=0.53 4.0 fit, delta=-0.61
0.5 351 .
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Figure 4: Log-log scaling of the specific heat ¢ (left) and correlation length & (right) as functions of
the reduced temperature e = |1 — T/T*| with T* = 1. Solid lines indicate linear fits using all valid
data points.

Results Figure 4 shows the log—log fits of the specific heat ¢ and the correlation length ¢ as
functions of the reduced temperature e = |1 —T/T*| with T"* = 1.

Using all valid data points, both observables exhibit approximate power-law behavior. Linear
regression yields the effective exponents v ~ 0.53 for the specific heat and 6 ~ 0.61 for the correlation
length. Deviations from ideal scaling are expected due to finite-size effects and the absence of a
restricted asymptotic scaling window.
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16 Project 2

16.1 Introduction

This project investigates the numerical simulation of exit times for a two-dimensional stochastic
differential equation (SDE) driven by a nontrivial potential landscape. The SDE is given by

dX; = —VV(X;)dt + V2 dW;,

where X; = (X;,Y;) € R2, ¢ > 0 denotes the noise intensity, and W is a two-dimensional standard
Wiener process.

The potential function V(z,y) is constructed from a symmetric mixture of two Gaussian distri-
butions centered at (%1, 0):

p+(x’y) = /((170)712)7 p_(x,y) = JV((_170)7I2)>

plz,y) = %(ﬁ(w,y) +p (z,9),  V(z,y) = —logp(z,y),

where Iy denotes the 2 x 2 identity matrix. This construction yields a double-well potential with
two metastable regions separated by a barrier near x = 0.
The main quantity of interest is the expected exit time

T(e,w0) = Ey[r5], 7 =inf{t>0: X; =0},

defined as the first time the process reaches the boundary x = 0.
The objectives of this project are to:

e compute T'(e,xo) numerically for a fixed initial condition oy = (1, 0);
e investigate the dependence of the exit time on the noise intensity ¢;

e explore the influence of different initial positions zg on the exit behavior.

16.2 Parameter Settings

Unless otherwise specified, the numerical experiments are performed with the following parameter
choices:

e Time step: At = 1073,

e Noise intensity: ¢ is varied over a range from relatively large to small values (e.g., € €
{1.0, 0.6, 0.4, 0.3, 0.2, 0.15, 0.1}) in order to investigate its effect on the exit time.

e Initial condition: The default initial position is zo = (1,0). Additional experiments are
conducted with different initial points to study the dependence of the exit time on xg.

e Stopping criterion: The exit time 7; is defined as the first time the first coordinate reaches
zero, i.e.,
7, =inf{t > 0: X; = 0}.
In the numerical implementation, the exit event is detected when the discrete trajectory crosses
x = 0, with linear interpolation used to improve accuracy.

e Maximum simulation time: A cutoff time T}, is imposed to avoid excessively long sim-
ulations. Typically, Tinax = 200 for moderate values of ¢, and increased up to Tyax = 400 for
smaller €.

e Monte Carlo sample size: For each parameter configuration, N = 2000 independent tra-
jectories are simulated to estimate the expected exit time.
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16.3 Results
16.3.1 Effect of noise level ¢

For zy = (1,0), the Monte Carlo estimate of the exit time T'(¢,z9) increases monotonically as
decreases. Specifically, T'(e, zo) grows from 1.67 at € = 1.0 to 7.84 at ¢ = 0.06 (all standard errors
below 0.14). This trend is also visible in Figure 5. [<empty citation>>|

To examine scaling, we plot log f(e, xo) against 1/ (Figure 6). The relationship is approximately
linear, suggesting an exponential law of the form

A
T(E7x0) ~ CeXp(;) ’

consistent with metastable barrier-crossing dynamics. See Figure 6. [<empty citation>>|

16.3.2 Effect of initial condition x

Fixing ¢ = 0.2, we vary zo and observe that the exit time mainly depends on the z-coordinate.
Starting closer to the boundary reduces the exit time: 7(0.2, (0.8,0)) = 3.55 versus 7'(0.2, (1.2,0)) =
4.34. In contrast, changing the transverse coordinate has negligible influence in our experiments:

~ ~ ~

T(0.2,(1,0)) =~ T(0.2,(1,0.5)) ~ T(0.2, (1,1)) ~ 3.96.

Exit time vs epsilon (Monte Carlo)

Estimated T(epsilon, x0)

0.2 0.4 0.6 0.8 1.0
epsilon

Figure 5: Estimated exit time T'(g,xg) versus € with o = (1,0).

Overall, the exit time increases rapidly as ¢ decreases, and log T (g, xg) is approximately linear
in 1/e, indicating metastable barrier-crossing behavior.
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log Exit time vs 1/epsilon

2 4 6 8 10 12 14 16
1/epsilon

Figure 6: logT(e,xo) versus 1/e with zy = (1,0). The near-linearity indicates T'(e,z) grows
approximately exponentially as e — 0.
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