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1 Homework 1

1.1 Mills ratio (Wainwright 2.2)

Solution 1. (a)
1

O ——

—2%/2 _ _
5-¢ z¢(2).

(b) By the results of (a), we have

pz22= [ owa=- [ “Pa.

Notice that

and

((1 - f) ¢><t>>/ _ 20 By < 20

and we derive the proof.



1.2 Sharp sub-Gaussian parameter for bounded random variable (Wain-
wright 2.4)

Solution 2. (a)We have
#(0) =logEl =log1 =0,

and \x
EXe
#'(0) = EoX Ix=0=EX = p.

(b)By derivation, we have

EX2eMX B <IEXe’\X

2
Ee X Ee X > = E/\[XQ} - (]E/\X)2~

¢"(\) =

We denote g\(X) = ]Ee;—;;, and we have

sup ¢”(\) < sup Var,(X) < (b— a)g.

AER q is a density function 4

(¢) By taylor’s expansion, we have

A —a 2 2
log Ee™™ = ¢()) = ¢(0) +¢/(0)A +/0 ¢"(s)(A —s)ds < pA + (b—a) X

which implies that
ENX—1) < (b —a)*\?
i 8 .

And thus, o = b*Ta.



1.3 Bennett’s inequality (Wainwright 2.7)

Solution 3. (a) By Taylor’s expansion, we have

— (AX;)F o AFpk—2 Ab—1— b
IEe’\Xi:EZ( k,) <1+) a$<1+A203<e )
k=0 ) k=2

o1
<o (0 ()

which gives the proof of (a).

Revise: we need to analyze X < 0 separately. In fact, notice that we can replace —X; with X;
without affecting the condition or the result, allowing us to assume X > 0.

(b) By Markov’s inequality,

LHS < e " Ee? ZL X

. A —1—\b
< e—)\né Hexp ()\20_3 <6W>)

i=1

)\b_l_
= e % exp ()\202 (e eI Ab))
oo (<" rog (14 22) £ 7 (B g (142
- P b 8 o2 2 \oz % o2 '

where the second line follows by (a), and the fourth line follows by choosing A = %log (1 + IZ’—;;). Let

~3, and we have

2
LHS < exp (—”b‘; (log(1 +t) — t + tlog(1 + t))> = RHS.

(c)We only need to prove

S O 0 N O A
P b2 o? = &P n2(02—|—b5) '

The right hand side is Bernstein’s inequality, and the inequality is equivalent to

2
h(t) > .
()*2(1+t)
Notice that
1 S 1
1+t~ (1+0)3
we have )
t“ 4+ 2t
B(t) =log(l+1t) > ——=
(1) =los(1+0) 2 577
which implies
2
h(t) > .
()*2(1+t)



1.4 Sharp upper bounds on binomial tails (Wainwright 2.9)
Solution 4. (a) By Markov’s inequality, we have

P(Z, < én) =P(e M > = 2") < MMEe~ n = exp(Adn + nlog(l — a + ae™?))
Let A = —log (g) — log (1—*5>, and we have
P(Z, < dn) < exp(—nD(d]|a)).

(b) We only need to show that
D(8]ja) > 205 — ).

For a > §, we have

and hence



1.5 TUpper bounds for sub-Gaussian maxima (Wainwright 2.12)

Solution 5. (a) We have

E max X; = —~Elog( max e**?)

1<i<n 1<i<n

log max Ee*
1<i<n

N
log (Z Ee)‘X'i>
i=1

A2o?
2

IN

IN
N N

).

V2Iog N
V=R we have

S
09
=
+

(

where the second line follows from Jensen’s inequality. Let \ =

E max X; < +/202logn.

1<i<n

(b) Consider {X1,...,Xn,—X1,...,— X} and apply the results in (a), we have

E[Z] < \/20210g(2n) < 2¢/02logn



1.6 Operations on sub-Gaussian variables (Wainwright 2.13)

Solution 6. (a) Since X1 and X5 are independent, we have
EMX1+X2) _ pAXipeAXe < e,\zaf/zex%’;‘/z _ e,\2(af+a§)/2

So X1 + Xy is sub-Gaussian with parameter \/o? + o3.
(b)(c) Notice that

01+02§\@ J%Jrag,

we only need to prove (c¢). By Hélder’s inequality, we have

2 2 2 2
ENX1HX2) < (BePA X )P (B X2) 14 < oxp (p)\ o7 + g 02)

2

choose p = %1"2 and q = 01074-;27

EeMX1+X2) « exp <)\2(01+02)2) )
- 2

So X1 + X5 is sub-Gaussian with parameter o1 + 0.
(d) Notice that, by property 2 of the sub-Gaussian random variable,

E|Xi [P < Colp?,
E| X5|P < Cgagp%,
for any p € Z. By Cauchy-Schwarz inequality,
(BIX) Xa[") 7 < (E|X,[*7)% (E|X|*?) % < 201Cao100p

By property 2 and property 5 of sub-Ezponential random variable (Vershynin Proposition 2.7.1), we

have
1

00'10'2'

Eexp(AX1X5) < exp(C%oiosA?)  for [N <

We have X1X5 is sub-Exponential with parameter (Coios, Co109)



1.7 Robust estimation of the mean (Vershynin 2.2.9)
Solution 7. (a)By Hoeffding’s inequality, we have

252

(2
L & )

which is the number of the required samples.
(b)By Markov’s inequality

2
P(|fp — p| > €) < 2exp (—n ¢ > =:0.

Hence, we have that

Var(ii) 202 1

Pl —pl > €) <2

e ne 4
Hence, we have that
802
n=-—.
2

(c)Let n = mk, where m € Z. By (b), when m > 320" e have

€ 7

1
P(Y; — <=
(Y=l > ) <

WLOG, assume k is an even number. Let i = medium(Yy, ..., Yy), we have

k i k
. k 1 1 k 1
pla-u>a= > (1) (5) <52 () -5 -0
i=k/2 j
When k = O(log %), then wp >1—6
|[147‘LL| <,

02

so the sample size n =mk = O(% log $).



1.8 Survey question

problem 1:
problem 2:
problem 3:
problem 4:
problem 5:
problem 6:
problem 7:

20 min
20 min
50 min
10 min
15 min
40 min
40 min

10



2 Homework 2

2.1 Tail bound and almost sure convergence

Solution 8. By Borel-Cantalli lemma and

ipqxn—)q >1) < f:(sm = i?ex
n=1 n=1 n=1

we know that

p(_i) < 00,

P(lim sup | X, — X|>t) =0,

n—00

which implies almost surely convergence.

_ 1
For é,; = ik

S P(Xn - X[ > <) Gui=)
n=1 n=1 n=1

and by Borel-Cantalli lemma
P(lim sup | X, — X| >1t) =

n—oo

which doesn’t imply almost surely convergence.

For 6, = #,
S P(Xp = X|>8) <D bnr=)

n=1 n=1 n=1

and by Borel-Cantalli lemma
P(lim sup | X, — X| >1t) =

n—oo

which doesn’t imply almost surely convergence.

For 6, = #,
S PIXn = X[ > <Y Gui=)
n=1 n=1 n

= =1

and by Borel-Cantalli lemma

1

nt2

ﬁ

L,

1

nt?

1,

1

n2tt

P(lim sup |X, — X|>¢) =0,

n—oo

which implies almost surely convergence.

11

)

< 00,



2.2 Maximal version of Freedman’s inequality

Solution 9. Let X = exp ()\ Zi(:l Dy, — )\Zk 19 ) by the condition

E[X x| Fx_1] = X_1-e NVkPR[APK | Fi_1] < Xg_,

we have {( Xy, Fi)} is a super-martingale. By Doob’s mazimal inequality (super-martingale version):

K
(1?I?§TZD;€Z2% )]P’(max exp()\ZDk)\Z ) )
¢ (E[max(Xo, 0)])

67)\75

IAIA

Choose t = M, and we get the result.
Then, we choose
{ 1 21og(1/5)}
A = min e
o’ Vs
and we have w.p. > 1—0,
K

sup ZDk < C' - max{v./log(1/§), alog(1/4)}.

1<K<T

12



2.3 Concentration and kernel density estimation

Solution 10. We prove that the function g(X1, ..., Xn) = ||f — fIl(X1, ..., X»n) is (2,..., 2)-bounded
differential.

1 r—X; z— X
X1, 0 X0 X)) —g(Xy, o, XL, X)) € =K Y- K !
||g( 15 ) 9 I n) g( 1, ) (2 ’ )H — nh” ( h ) ( h )”1
1
< (1K (@ = hXo)| + [ K (z = hXDI])
_2
- n

By the concentration inequality of bounded difference function, have g(X1, ..., X,) is SG(%), which
implies

P (Ilfa = £l > Bllfu— flls +3) < e

13



2.4 Concentration for spin glasses

Solution 11. (a) Observe that Fy(0) =log}_ ¢ i1ya exp{ﬁxTﬁx}. We have

9 . ) 1 YeeqaieexplzaOz}(za’)
ZF0) = —
06 Vd D41} exp{%aﬁ@m}
and o .
0? 9 o) = 1 Zze{:l:l}d exp{f Oz} (zx’)®
d
06> d Zze{:tl}d exp{ \/E:BTO:B}
We have
i 52 Fa6)U = 12 pe(t1}d exp{%wTHw}(tr(waT)Q
0° & Secpon(getal
Thus, Fy is a conver function.
(b) Notice that

12 6 o), < er{il}dexp{f z Oz} (xx ")
39 2= D re{+1}d exp{\/a:cTH:c}

‘ < lzz (|2 < d,
2

by mean value theorem, we have

1Fa(0) = Fa(0')ll2 < Vd||6 - 0.

c¢) First, we give the lower bound of the E Fa(9)) By Jensen’s inequality,
d

E{Fdéa)] Clllog[ > [eXp{f T933}]]
me{il}d
:log2+dlogE[exp{\f x "0z}
> log2+$ZlogE[exp{% i dZIOg]E exp{f 0;;}]

d
>log2 + 152.

Then, we prove the concentration inequality. Given that I;d T—szschztz we have

P (Fda(le) —E {chge)} > t) < e_tzd/(%z), for allt > 0.

Combine them together and we get

Fy(0 § - 24
IP’< d(g)zl 2+5+t>§26 255 for allt > 0.

14



Theorem 3.26 (Functional Hoeffding theorem) For each f € % and i=1,...,n,
assume that there are real numbers a; ; < b; ; such that f(x) € [a; ¢, b; 7] for all x € X;.
Then for all § > 0, we have

no*
P[Z > E[Z] + 6] < exp (—m) , (3.80)

where L? := sup;. » (L3 By —aip)?).

Figure 1: Theorem 3.26

2.5 Rademacher chaos variables

Solution 12. (a) We let f(e€) = |QY%¢||ls and we know f(x) € (—Vd||Q?||op, V| Q3| sp) as
x € {£1}¢. By concentration inequality for Lipschitz function (Theorem 8.26 in the [2] as the figure
1 shows):

dt? ) = expl t2
— ) =exp(————
16d(|QI13, 16(|Q113,

As E[f(e)] < (E[f()?])Y? = /tr(Q), we derive the result directly!
(b) (I am inspired by [1] Lemma 6.2.2) We can write

P(f(e) = E[f(e)] > 1) < exp(— )-

Y = (¢, Me).

Since )
E[MMI] < exp(V]| Mel?/2),
So (', Me) is sG(||Me||) and
52

2

By (a), we have
2

P(|[Me]l3 = (IM|lr +1)*) < exp(— s
16/[ M3,

)

Thus

2 52
) bexp(— g
16 M[3, 2([|M||F + t)?
2 52

) el g
61T, AT +#)

P(Y > 6) < exp(— )

< exp(—

)

62
)
A M| + 165 M|l op

< 2exp(—

The last line follows by choosing t* = 25||M || »p-

15



2.6 Maximum likelihood and uniform laws

Solution 13. (a) By definition, for Bernoulli,

R(0,0.) = — 10g<1/(1+e‘9*))+ ¢0- 10g<eo*/(1+ea*))

1+ ef~ 1/(1+¢€?) 1+ ef~ e?/(1+ e?)
0.
= ﬁ(@* —6) +log(1 4 ) —log(1 + ).

For Poisson,

0.) = ipg* (2)(0x — exp(6.) — Ox + exp(0))

=0
=ef — e + (0, —0)ef
For multivariate Gaussian,

1

R(Q,Q*)z/ B(x—H)TZ_l(JU—H)—2(30—9*)T2_1(x—9*)]

N
(2m)4 3|

1 1 1
==(0-6,)"2"10 -0, —/9—9* Tyl ———ex {— Tyt }d
5( ) ( )=/ ( ) Xy TR

exp {—;(x —60,)"' Nz — 9*)} dz

2

= %(9 —0,)" 270 -6,) - (0 - 0*)T271/2/z (;r)d exp {;z z} dz
= %(9 -0, 0 -9,).

(b) For Bernoulli,

X
6 = log Zl:}L
n—3iX
where we assume ), X; € (0,n)
~ ~ ee* Zn n
E0,60,) = R(0,0,) = 0" —1 1 - —log(1 + €%).
(0,6,) = R(0,0,) 1+69*( 0g — = 1X)+ 0g — ST og(l+e”)

For Poisson,

E0,0,) = R(0,0.) => X; — e’ + (0. —log > X;)e’
i=1 i=1

For multivariate Gaussian,

E0,0,) = R(0,0,) = ! ~(= ! ZXZ 9*)T2*1(% ixi —6,).



Now we give an upper bound on the excess risk. Let Empirical risk Ry, (6) = 1 37" | [log(pe~ (X;))—
log(pe(X;))] and population risk R(6) = R(0;6%).

R(0,0.) = Ex,[R(0) — Ra(0) + Rn(0) — Rn(0.) + Rn(6.) — R(6.)]
< 2Ry, [sgp |R(0) — R, (0)|]

We can write the expectation as
R(O) = Ex; | 11,(6)).
and we have
R(6,6.) < 2Ex[supEx;[| R, (6) = Rn(0)]]
< 2, x;[sup | R, () — Rn(0)]]
= QEXi,X;,ewUmf{il}[Sl;p lei(R;,(0) — R, (6))]
= QExi,x;,eiNUmf{ﬂ}[Slelp lei(log po(X;) — log po(X7))]]
< 4EXiei~Um‘f{il}[SL;p |ei log pa (X:)]
=4R, (%),

where % = {logpy(-) : 0 € Q}, and R, (-) is the Radamacher complezity, whose definition is
1 n
R, F)=E e €Unif{+1} SUP — eif Xi)l.
() = Ex, c;cunif{ 1}f€9”|; (Xi)]

For Bernoulli:
F Bernouiti = {fo(x) = 0z —log(1 + 69) cx€40,1},0 € Q}.

For Poisson:

Fpoisson = {fo(x) = 0x — exp(0) — Zlogi cxeN, 0 €N}

i=1

For multivariate Gaussian:

1 1
Fnulti—gaussian = {f@(a:) = —5(37 — G)TZ_l(x —0)— 3 log(27|X]) : z € R,0 € Q}

17



2.7 Basic properties of Rademacher complexity
Solution 14. (a) We have

n

1
P, (conv(F)) = E. x, [ﬁ , Sup(y) Z & f(Xi)]
JEconv (S i=1

< Bex, [ swp 32 (X)) = #,(F) < Buleonv(F))

The first inequality follows from the convexity of sup and the second inequality follows from the fact
that F C conv(Z).

(b) We have
Bn(F +9) = sup Zez X))l
Efl 1
<E.x,[— bup ZQf )]+ Ee x, [~ bup qu B (F) + % (9)

If we choose F =4, we have
R (F +9) = %n(2F) = 2%, (F),

the equation holds, which implies the bound is tight (cannot be improved in general).
(c) We have

%n(y_FQ) = ;ggzez z))]

> eX 7SU.p Zezf +E€X Zezg(X

se%’(ﬁ‘H%(lE[Ze? D2 (E Zg D2
—| ||_
\/592

< B(F) + %ngnm.

The second inequality is Cauchy-Schwarz inequality. The last line follows from

— A(F) +

lgll2 < llglloo-

18



3 Homework 3

3.1 Gaussian and Rademacher complexity (Wainwright 5.5)
Solution 15. Recall that the definition of the Gaussian and Rademacher complexity of a set is

d
1

Y(T) = =Ey,~n0,1) |SUP Y wia;|,
d @€l

d
1

K(T) = =Eq, ~Unif{+1} | SUP ) 0ia;| .
d @€l =1

(a) By Jensen’s inequality

1

g(T) = gEaiNUnif{il}]Ew,;

d
sup Z |wi|aiai]

a; .
* =1

d
sup Z aiai] By, [

ai€li—1

21 d
= \/;dEaiNUnif{il} [S}lp Zaiai

a .
N =1

1
ganUm'f{il}

Y]

w]

(b) Consider contraction . (x) = %, we have

Z(T) = E[Z (4w (T))]-
Thus,

d
1
g(T) = *Ewim/x/(o,n lSUP Zwiai

d ,
@€l

< E[max |w;|] - Z(T) < \/2logd - Z(T)

1<i<d

19



3.2 Maximal inequality for sub-exponential random variables
Solution 16. We have

£ max] X |

i€ [n]

IA

1 log E [maX[GXP(MXiM]
A i€[n]

IN

1
1 JogE E}{:} exp(A X))

(log(2n) + log E [exp(AX;)])

>/\1—‘

Recall the properties of sub-Exponential random variables, we have

1 1
logexp(A\X;) < =M\ai, for A < —.
2 (65
Thus,
1 2
E |max |X;|| < 1nf — | log(2n) + )\ o3
i€[n] 70‘2 A
If \/210g (2n)

0‘2

E {m?)]dXZ@ < V2a1+/log(2n).
i€[n
If 7\/212514(27” S L

g’

a?

2

E [m?x | X |} < aglog(2n) + 2— < aslog(2n) + gal log(2n)
i€[n]

To conclude, we get

E {max | X |} [al\/long)—f— Qo log(2n)}

1€[n]

20



3.3 Covering numbers for low-rank matrices (Duchi 7.8)

Solution 17. By singular decomposition, we can write

T

-

A= E o,
i=1

where Y _._, 07 = 1. By triangle inequality, we have

T T
JA = A|lp < llowu; — ojuglla+ Y floi — v)2.
i=1

i=1

Thus, we can bound the covering number of e—net of the right hand side 4, 4

. 4y 2rd
N(e, Mra, | - |lF) < N(e/2r,Ba(1),] - ll2)?" < (1 + 6)
where the inequality follows from the proposition in the textbook:

vol(B(1+ €/4r)) 4r ¢
vol(B(e/4r)) = (1+ e)

N(e/2r, Ba(1),] - |l2) <

and both o;u; and v; are in the unit ball B4(1). Taking the logarithm on both sides, we obtain

log N(e, Myra, | - |r) < 2rdlog(1 + 4r/e).

21



3.4 Rademacher complexity bound of Lipschitz functions on [0, 1]¢
Solution 18. (a) First, we denote A as the e-covering of F3. We can prove that

M= N FL | ) < exp ((L)> .

Second, we consider the random variable = 3" | € f(x;).

log E[exp(% Zl €. f(x;))] < nlogexp (2[/:2)
L2
=5
thus 2370 € f(2;) is sG(ﬁ) random variable.
By one step discretization,

sup |l Z Eif(xi)]

'@n(yg) = ]E:r:i,ei
feFg i3

1 — 1 &
< ]Eﬂﬂi,fi Sup |7 El(f(l‘l) - f/(l‘z))| + Eﬂﬂi,ﬁi sup |7 elf(‘rl)
If—Flloc<e T ; few M ;
< et /202N (6 ZL, | - Ilso)
L2 (L\*
<e+4/2— ()
n \e
1+d/2
= e+ L ! e*d/z.
Vvn
Choose € = Ln_%ﬂ, we have
Ro(F) S L~ 72,
b) Using Dudley’s entropy integral method
(b) g Y py integ :
2L
AuF) Ser 7 [ lor N FL - ) du
2L d/2
f/ (5) o
_ —d/2
=€+ — u du
\/ﬁ e/L

Ifd=1,
2
/ w2 qu < 2V/2.
e/L

Choose € = 0, and we have
L

(‘?L)N\/»
Ifd=2,

2
/ u—d/2 du:10g2_10g (E) = 10g2—|—10gL—10g6.
e/L L

22



Choose € = %, and we have

L 1 L
Ifd>3,
2 2 L\
u_d/2du§ _— () .
e/L d—2 €

Choose € = Ln="? and we have
Bn(FE < Ln~ Y4,
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3.5 Upper bounds for [)-“balls” (Wainwright 5.7)
Solution 19. (a) We have

G (T3) = Ewmn (0,12 lsup (0, w)
0T

~ Eunrioss) |ma sl

The second equality follows from Cauchy-Schwarz inequality
(0, w) < llwsll2[l0]l2 < [[wsl2,

and the 7=" holds when 0 = wg/||ws||2.
(b) By Cauchy-Schwarz inequality,

Elllwsll2] < /Ellws|3] = Vs,

Asw — ||lwg||2 is 1—Lipchitz and w is a normal Gaussian random variable, we can prove that |[ws||2
is sG(1), which leads to the result.
(c) By mazimal inequality.

E [max|lws[l2] < v/s + E [max|ws — Efws].|]

< Vs + /202 log ((j))
< Vs + (/| 2slog (esd)
e

Vs < /sloge < [ slog <6Sd>

The third line follows from

The last line follows from
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3.6 Uniform laws and logistic loss (Duchi 7.1)

Solution 20. WLOG, we can assume n > 2. Denote Xy = %Z:;l me(X;,Y;) — Mp(X,Y), © =
{eR: 9| <7}, Z ={zeR?: x|, <M}, F ={my(z) : 2 € 2,y € {£1},0 € O} Notice
that

mg(X;,Y;) — Mp(X,Y) < sup log(1 + exp(—y6 ' z)) — inf log(1 + exp(—yf "
(YD = Mp(XY)S s gL besp(y0 @) = int | os(1 4 exp(—ydT2)

<log(1+ eM™) —log(1 + e M) < Mr.
From this, we have
o Xy is SG(%) on 6.
o supy Xy is (X, ..., Mr)

n

-bounded, which implies supy(Xy) is SG(%) ON 21y eeny Zny.-

As a result,

2
ne
P Xo—E Xo] > €) < — .
(SI;P 0 [Slélp o] =€) <exp ( 2M2r2)
By one-step discretization, we have

M
E [sup Xp] < inf <e’ + \/2
0 ¢

To bound the covering number of %, we next prove the Lipschitz condition of mg.

2,2

logN(e’;ﬁ,Loo)) . (1)

[me, (2) —me,(2)lc =  sup  (Op(w,y),01 — O2)
ze X ye{xl}
exp(—y0
< sup <M(_ygj)’gl — )

ved yel{s1} 1 +exp(—yfT )
< sup [|z][|61 — 02|
zeX

< M6y — 0|

So mg(2) is an M-Lipschitz function and we can bound the covering number now.

¢ I Mr d
/. ) « . . < . . < .
NesF o) < N (el 1) < 8 (GsBanl 1) < ()

6/

Substitute the covering number into the equation (1) and we have

M?2r2? M
E [sup Xp] < inf <e' + \/2 nr dlog ( /T>>
9 €’ €

Mr M?2r2
<L+

M272
S/ ! dlogn.
n

The second line follows from choosing € = %, and the third line holds if n > 2. Then we choose

en(0) = C’\/ﬂfy2 (dlogn +1log ) > E [supy Xo] + /2 log L, thus

2r2M? 1
P(sup Xy > €(d)) <P <sup Xo — E [sup Xy| > Tn log ) <.
0 0 0

dlogn

5]
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4 Homework 4

4.1 Lower bounds for [o-“balls” (Wainwright 5.8)
Solution 21. (a) Denote that
T = {e eR?:0; € {—s71/2,0,5Y2},0]|o < s} c T(s),

and we have the inequlity of the covering number

N (1/\/5’ Td(s)a pEuc) >N (1/\/57 T, pEuc> .
Observe that for fized point A € T, we have

s/2—1
{r €T : ppuc(z, A) < 1/\/5}’ = |{z € T : daamming(z, A) < 5/2}| < Z (j)?

Jj=1

And we can get

N (1/\/5; T, pEuC) >

The last line is equivalent to
34/2s > \/EEZ — 3k > 3¢e2k2,
s
which can be proved by

4 4
3k > (3k/6)6 > (k/2)¢ = L )
- - 64 = 64 —

(b) By (a) and the properties of packing number

M(L/V2ETS). prac) = N(/VET(s). pruc) > <d>

S

Define Guassian Process Xg = (w,0), (T (s)) = E, [supeer(s) X9:|. By Sudakov Minority,

E,,

1/v2
sup Xg| > i\/log M(1/V2,T(5), pBuc)
9eTd(s) 2
2 1/ slog (ed>
S

26



4.2 Sub-Gaussian matrices and mean bounds (Wainwright 6.8)

Solution 22. (a) First we prove that
E {eA'A"‘“X(S"')} <de .

Proof. We have

Notice that

and we can get

2a; —~ AV Y,
tr (H (E[e n })) <tr (exp <Z 52 >> < dexp Zl 52
) i= i= op
Then, by Jensen’s inequality,
1 1 log d
E[)\max(Sn)] — XE |:10g ek‘)\max(sn):| S X log]E {eA‘AHIaX(STL)] S of

Choose \ = 7‘/@
(b) Define

and we derive the result.

. ;0
S, =", %Q,, and use the result in (a) for Sy,

~ 202 1log(2d
EDb (8] < ) 222820

Notice that
)\max (Sn) =

and we derive the result.
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4.3 Tail bounds for non-symmetric matrices (Wainwright 6.10)
Solution 23. (a) We have

AAT 0
1011, = Auesl@T @ = A ( (5 1 74.) ) = o (4247 = 1415,

which implies ||Qillop = || Aillop-

(b) We have
e 0 AiAiT 0
Var(Qz) = E[Qz] =E [( 0 A;rAi ’
thus
1< & iy AAT 0
w2 V@] = ELOE ) o
= op
max { = ZE[AiA;r] ) . Z]E[A;FAz] } =
n n
i=1 op i=1 op

(¢) Denote that S, =Y i, Q;, by conditions and (b),
[Qillop < b and || Var(Sh)llop < no?,
So by matriz Bernstein’s inequality, we have

(1

>4
=1

___ns%
> né) < 2(dy + dg)e 202 +v9)
op
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4.4 Pairwise incoherence (Wainwright 7.3)

Solution 24. (a) Assume v is the eigenvector according to the Amin, and |vi| = max; |v;|. Assume

1 . aip - ai1s
EXS XS ==
asy - ass

By pairwise incoherence, we havea;; € [I — 2,1+ I] and a;; € [-1,2]. We compare the first

coordinate of the eigenvector

v

S

‘a1i| - )\min > 1-s

s s

Vs

)\minvl = § a1;V; = a1 — )\min < § ||UZ| 1- = 0(7)
i=2 171

i=1
(b) Assume A € Null[(C(S), we have
XAS = —XASC and ||As||1 Z HA”SC

We know )

> Amin||Asl2 > (1 —7)[|As]2.

XAg
NG

On the other hand,

2 T
XAg XAge X'X
=(—= ——— 2 Y= |A — T ) Ace

<¢ﬁ’ ﬁ> ’S<n )S

XAg v v

<2 ol < 52 ells.
H Tn < SMAslhllAs | < \/55\|AS||2|\AS ll1
Thus,

(1 =llAs]3 < %Ilﬁs\lzllAselh = (1 =)[Asll < Vs(L = 7)l|Asl2 < vl Ase

If v < %, then Ag = 0 = Age, which implies that

1 <7)As]:-

Null () C(S) = 0.
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4.5 Pairwise incoherence and RIP for isotropic ensembles (Wain- wright

7.7)
Solution 25. (a) Apply Bernstein’s inequality:
1
> -
- 3s>

1 « 1
=N X 1> — d?> — d)P
n; 17 _3S>+( ) (

< d? exp (C’nmin {12, 1}) =: 0.
2’ s

Solve the equation and we only need:

d? d
> o2 2 > 62 Z
nzs log((;),vs log(5>

(b) First, we fix |S| = s and bound the | X& Xs/n—1Is|op. By concentration of sample covariance
of sub-Gaussian, we have

1
P <maX|XTX/n — I > > < dP (
ij 3s

% ; X1 Xo;

log(1/6 log(1/6 1
1XT Xg/n — Il < 108000 [5 #los(1/0) 1
n n 3
Choose
2s d
oy <k) <,
=1
we have

And we only need
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4.6 Weighted /;-norms (Wainwright 7.6)

Solution 26. (a) Statement: Let X = (w%X(l),-~- 7w%iX(d)), Null(X) = {A : XA = 0}. For
A € Null(X), we have
1
|r§1|i}zi”ASH1 < 5 l1AlL-

Proof. Let 6, = w;|0;|, we can rewrite the minimization problem as
min [|f]|; such that X6 = y.
OeR?
The necessary and sufficient conditions for uniquely recovery are
Null(X)[)C(S) = {0}
for all |S| = k. The condition can be written as: for A € Null(X), we have

1
max [[Asly < 5[ Al

[S|=k
O
(b) Statement: The condition for recovery is:
s
Cmin > 2¥5pw(X)
Proof. Let 0 € Null(X), |S| = s, we’ll show that
[0se]l1 = [|6s]]1-
Notice that
o012 1 ? TyvT 1
0= ||X9||2 = ||Xgb0s + ZXSC&SC > QSXS Xg0s + 2¥QSCXSCX595.
2
So we derive
1 X3 Xs
minl0512 < coin 6515 = Amin ( 22 ) 513
s n
T (XdXs 1 1 Xl Xg
SQS n 95’ S 2;‘95@XSCXS€S| S 2;”95”1”95%”1
Thus 105
Scll1 tcmin Cmin
> > 1.
10sll1 — QstHM ~ 2sdpw (X)
n max
O

When t — oo, the conditions will be naturally satisfied.
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4.7 Sharper bounds for Lasso (Wainwright 7.15)
Solution 27. (a) By exercise 7.9

Li(s) = {llAll2 < L[|Ally < s} € 2conv{[|Al2 < L, [|Allg < s} = 2conv Lo(s).

Thus,
LT LT LT /
sup A —-X " w) <2 sup A —X'w)l =2 sup A —-X'w)l:=2".
A€ELq(s) n A€conv Lo(s) n A€Lo(s) n
Next, we prove that, w.p. > 1 — 026753”52,
!/
z" <e slog(ed/s) 4
Co n

Proof. Let f(w) =supa(A,2XTw) and Z’ = f(w). Notice that

1 C
flwy) — f(w2) < ;||X\|op||w1 —wsll2 < —=[|wi — wal|2.

NG

Hence, f is %—Lipschitz and by concentration we have

P(Z' —E[Z']) < exp (—2"222) .

Then, we bound the expectation.
! 2 T
E[Z'| <E sup —|| Xgwl|z2] -
IS|<s, | Alla=1 "

Using chaining method and || X d w||2 is Cy/n-Lipschitz, we have

V2
E[| X4 w|l2] <E[ sup (0, X]w)] < inf E[||XJw|s] + CJ\/E/ 1/ slog(1l+ %) du.
fess—1 € 0

d
— sup E[||XJwl|s] < Covnys < Covn slog <.
|S|<s s

Combine them together, we have

E[Z'] < Co M.

~ n
Combine the concentration inequality and we prove the result.

(b) By the LASSO condition, we have

1 2w’ XA
RIAI3 < CIXAJR < ===

A 1
K||A 2§2<,XTw>.
182 <24 A &

32

where A = 0 — 0*. We have



Notice that | Al < 2||0s — 6% < 24/5, we have
Kl|All2 <2 sup

<A, 1XTw>‘ <200 2s log(ed/2$)7
A€L1(28) n n

NS Co /slog(ed/s).
K n

’ 2
w.p. > 1 — che ",
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5 Homework 5
5.1 Restricted isometry property (RIP) implies restricted eigen- value
(RE) (Wainwright 7.10)
Solution 28. (a) Again, we use the result of Exercise 7.9.
Li(s) = {llAll2 < L[|Afl < v/s} € 2conv{[|All2 < 1, [|A[lo < s} = 2conv Lo(s).

Thus, if |0])1 < /5]6]|2, 6 = ||99H2 € 2conv(Lo(s)). Let § =3, aib;

T

i,J

By condition
|6,/ T6;] < 46.

410/ T0;| < (0:+0;) "T(0; + 0;) — (6; — 0;) "T(0; — 0;) < 326 = |0,/ T'0;| < 8.

Combine them together, we have

T
(Z aiei) r (Z ai0i> < 452 0512 + 1652 718 < 8.

i<j
And by rescaling,
’ ’ |07T0| < 85|03

Otherwise,
6], > V/s(16]]2-

Consider § = m, we have ||0]|y <1 and ||0||; < v/s. Then similarly to the above proof, we can

prove result in this case.
In conclusion, we have

5 < :
67r0| < { SOOI 161 < 31611

(b) Let X satisfy RIP(2s), then for any d x 2s submatriz Xas,
1
(1= 82) A5 < Sl X2aAll3 < (14 620) [ A

— ‘<9, (;XTX — Id> 0>’ < as, for all 0 € Ly(2s).

Then, we prove the result for all 0 € Cy(S), |S| < s. By part (a), if we have

101 < v/5[10]l2-

1
‘<9, <dXTX - Id) 9>‘ < 12654103,

and k =1 — 126o5. Otherwise

2
<9, <1XTX - Id) e>’ < 12MH9”§ < 1282,(1 4 )?|0)13,
S

Then

p <
and Kk =1 —12825(1 + a)?.
(¢) Hard Problem.
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5.2 Random matrices satisfy RIP (Exercise in Lecture 18)

Solution 29. We only need to prove w.p. >1—§

<e forany|S| = 2s.
op

- IQs

XIXg
n

We use covering number to prove the result.

XsTXS RS T,)2
— o« — Iy = g - . — 1.
sup <u, ( - 2s | U sup - g (z; w)

op llull2=1

XIXg
n

- IQs

. _ XdX
Using e—net N to cover S**~!, A = =225 Ty,

|Allop = (Az, z) < (Axg, z0) + (Axo, T — x0) + (A(T — 20),2) < suIJ)t/(Amo,x@ + 2¢|| Al| op-
To€

Choose € = i and we get
n

1
<2sup — Z(x:u)Q - 1.

op ueN T i—1

- I2s

XIXg
n

Notice that the covering number can be bounded
2 2s
|| < ( + 1) = 9%,
€
Fiz u, v/ uw ~ 4(0,1). By Hoeffding’s inequality,

P (711 f:(xju)Q 1> e/2> < exp (—”862) .

By union bound, we get

1 & ne
P sup — m;rug—lZeQ < 9% ex (—),

(1 23wt 12 ) <o (-

2
> e) < 9% exp (_ne) .

8

op
By union bound, we get

XIx d 2 9ed\ * 2
P ‘ S5 _ Ios >e forany|S|=2s| < ( )925 exp (_ne) < (e) exp (_ne) = 0.
op 2s 8 2s 8

n> 810g(1/(5) + 2slog(9ed/2s) > log(1/0) + slog(ed/s)

€2 €2 '

hence

XIx
IP(‘ S5 T,
n

Hence
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5.3 Analysis of square-root Lasso (Wainwright 7.17)

Solution 30. Consider 4 problems

1
in < —1|ly— X602+ M0 ¢ . 3
arg;g}l}{g{znlly I3+ Al ||1} ®)
in { |y — XOl|> + 6] (4)
arg min —— - n .
8 gera N Y 2 !
) 1 2
arg;relﬁggl{%ly—xmb}, s.t.]0]1 < Ry. (5)
1
ind—|ly — X0 20| < Rs. 6
argenelﬁ&{\/ﬁy ||2}7 s..)|0]1 < R (6)

In the lecture, we proved the 3 and 5 are equivalent. For the same reason 4 and 6 are equivalent.
Obviously, 5 and 6 are equivalent. Thus 3 and 4 are equivalent.
(b) Take the derivative of the objective function, we have

o (1 LXT(x0-y)
0= 35 { Tl = X0l + ol p = T
ﬁ”y - l|2
(c) By definition,

R

N

ly = X0ll2 + 1m0l < —=lly = X07[|2 + 720" [1

L
NG
— L - XAy — w2 < 7al6 ] — ]

\/ﬁ 2 \/ﬁ 25 Tn 1— Tn 1

2
1 . . ; 1
— (gl - X8k = 316l +2nl00: ) < 1ol

1 " ~ 1 « .
— 11X -2 (A 1XTw) 420100~ 10°1,)? - 23,
Notice |10, = 0"+ < |Asll = [Ase|l1, we have

o C ly — X0l
SIXAIZ<2(A ZxT 9y ¥ — 27112
LIXAB <2(A TxTw) 2,

That’s not enough, we need to improve the result using (b).

(1Asl = | Ase]l).

%HXAH% _ % = 9*)T XTx (i)

~ 1A (XTXé - XTy) + %A (XTy— X" Xx0%)

n
LR Ty D A 2
= n<A,X w) \/ﬁHy X0[2(A, 2).

The last line comes from (b). To bound (A, 2), we have
(A, =2) = (As, —2s) — (Ase, 25) < || As]ly — | Ase |-

Combine them together, we prove the result.
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(d) By (c)

ly — X012
NG

(1Asll — 1 Ase]1)-

1 A <~ 1 N .
05 LIXAB <2(A 1xXTu)+ 2, (1As]: = A1)

ly — X6

NG

If ||Ase|ly < ||Asll1, then the result holds. Otherwise,

1 -
<2 AL X Tw]o + 270

X T wllooly — X612
nfwl

ly — X0l

|
? 7

(1Asell = 1As]1) < 7 (1Asell = [1As]1) < = A N )1X Twlleo

S|

We can choose
Ry = |07,

n problem 6 and ||y — X0||2 > ||y — X0*||2 = |wl2. (We still need to verify that this choice of Ry is
valid by some optimization theory.)

= 2(|Ase 1 — [As]l1) < Al = (1Ase ]l + | As]h),

which derives the result.
(e) By RE condition, we have

1 " A
CIXAIR 2 sl AJB.

By the inequality in (d), we have

1 A Tn A A Tn A
slAls < —(IXAIS S = lwl (3||As||1 - IIAselll) < ﬁllwllzx/gllﬁ\lz-

n

Thus, we have
l[wll2

||AH2 N W’Yn\/g
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5.4 Unitarily invariant matrix norms (Wainwright 8.2)

Solution 31. (a) (i), (ii) and (iii) are unitarily invariant.
Asoc(VMMTVT)=0o(MM?"), the singular values are invariant under orthogonal transform.

IM)7 =" a7
7
M ||l nue = Z |z
i

[M][op = sup 0.
1

Hence (i)-(iii) are unitarily invariant.
However, for (i), we can choose M = diag{1,0---,0} and V(1) = ﬁ(l,-~- ,1).  Then
VMUl = & = | M].

(b) To prove it is a matriz norm, we need to check the four conditions. As p is a norm on R%,
we have
[1M]|, = 0.

|1M]|, =0 if and only if 0;(M) =0 <= M = 0.
[aM|l, = placi (M), acq, (M)) = |elp(o1(M),- -, 04,(M)) = ||| M ]|,
At last, we will prove the triangle inequality.

IM + Ny = plor (M + N),---, 04, (M + N))

First, we define
k k
T <y Y in < Zyi.
i=1 i=1

By Ky Fan’s inequality,
o(M+ N) <o(M)+o(N).

Proof.

k
(M) = tr(MU
; 7 ( ) ran%%ﬁ:k‘ r( )

max tr((M 4+ N)U)< max tr(MU)4+ max tr(NU).

rank(U)=k rank(U)=k rank(U)=k
O
We only need to prove
p(x) < py) asx <y y.(Hard)
(¢c) We have o(VMU) = o(M), as p is invariant to permutations and sign changes, | - ||, are

unitarily invariant.
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5.5 PCA for Gaussian mixture models (Wainwright 8.6)
Solution 32. (a) Our model is
x; = €,0% + ow;,

where ¢; € Unif{£1} and w; € N(0, Iy).
First, we restate the PCA model. The empirical covariance matriz is

and R .
6 = arg max 6'%0.
llo]l2=1

Compared to the textbook theorem v = % and we have
. 1 /d d
16—0l> </ < m/1+a2\f w.h.p.
v n n
(b) The classification rule is

P(r) = {

Ui e =0 < e+ 6.
1 i fle =6 > e+ 6.

(c) We can rescale the model by DREE

Similarly, we use the largest eigenvalue of empirical covariance matriz

0 = arg max 60 <T1L£Z£ZT> 0.

lI0]l2=1

But now, our estimator doesn’t work because as n — 0o,
1
o y—20*
e
[E726%]|2
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5.6 PCA for retrieval from absolute values (Wainwright 8.7)
Solution 33. By definition,

20:0; Lif k#1L.
9 T _ % s _ kY1 ?
(Elyiziz; ]),, = ;91 bzizjont = {29;:2 vif k=1

And thus,
Elyiex] | = 20° 70" + I,

Obviously,
vtously )\maX(QH*TG* + Id) —3.

Then we can construct our PCA estimator

X 1
6 = 07 [ —y2xz; | 6.
Ml (nyl i
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5.7 Lower bounds on the critical inequality (Wainwright 13.5)
Solution 34. (a) By critical inequality,

1 n
ap S g

lgll<s,geF ™

62
< OEwls <6 = -,

g\ —
4(5,F) = E, -

as 62 = 40°.
(b) By the lower bound of 4(8, F).

Thus, we get

As § € (0,1], we have
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6 Homework 6

6.1 Local Gaussian complexity and adaptivity (Wainwright 13.6)
Solution 35. (a) By definition, we have

g(yl1(1)76):E[ sz 7

06911(1) Hf”n_ =1

o Soua]

96?11 (1) i=1

where w; € A (0, %) By contraction inequality,

1
sup E w; 2] < -E [ sup wi]
n

beF, (1)1 1<i<n

By maximal inequality,

Combine them together, we get

By the definition of 0,

n 2 n 2
~ g g
— ( vn — Vn

2 0 =7 . P logn
2§2\/ﬁ;(9iei)wi§2\/ﬁo§¢(%l(1),5)”90 Iy < choy| =222,

The last line follows from ||6 — 0%y < ||6]|1 + |67 |1 < 2.
(b) WLOG, assume 0* = e;. We have

= Hé—&*

]. 2 ||U+el||1 2 1 - "Ul| —’—Z|vg|
j>2
= [vlly < 2Jv1] <20V/n.
Then we write the critical equality
G, (6, 7%) < 5
4 ~ 20//n’

Now we analyze the Empirical Gaussian process.

V1 V1 V1
@, (5, ") < Y81 sup 16— 6%||, < Y281 sup ol < 268"
n 10111 <1,]|6—0*]|1 <dv/n n [loter||<1,[|lv|[1 <ov/n \/ﬁ

Solve the critical equality and we can choose

Vdlogn

n

Op <X O
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We have
10— 072 < 62 = 02208

n ~ “n n2

. « 1
— (16— 672 = n)lf — 6% )% < cho? 22,

n
Remark 6.1. [ use the definition

%9@:%E

sup Z wif(xi)‘| )

feF =

which is consistent with the textbook. The result may be a little different.
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6.2 Rates for twice-differentiable functions (Wainwright 13.8)
Solution 36. We apply Corollary 13.7 of the textbook

16 " e N B T Ty <
— o n\l; Bn\0, - = -
\/ﬁ 52/40 & = © 4o

As Fo — Fo C Foco. By the result of Example 5.11 and let « = v = 1, we get

log Nn(t,Bn((5, Fo — fo) < () .

Thus, we combine the results and identify that

1 3 0'2
1< 82 2= =
\/ﬁé Sc=9 ( )

And by Example 13.11 of the textbook, we get

F o? o 2y1/5
P <||f - JC*H?I > ¢y (n) > < Cle—cz(n/a ) )
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6.3 Rates for additive nonparametric models (Wainwright 13.9)
Solution 37. (a) We have

=1

For fized j, when t > 4, ;, ||A]||n > \/ton ;. Then, w.h.p, we have

< V1ol A,

o
n

D widj(Xiy)
=1

by Lemma 13.12 in the textbook. And when ||Aj|, < /16,

o
< sup —
n

1gjlln<4/tdn,;

D wigi(Xyy)
i=1

Then we consider the union probability,

IP’(U
n |4

> widi(Xij)

=1

> wiAj(Xij)| > 65, A (Xip) > \/@) (8)
=1

> tdi; + vt5ij||Aj||n> (7)

IN
=
7N
319

I
o n . . .
+P <n D wiAi(Xi)| = V6511411 A, (Xiy) < vt5n7j> - (9)
=1
1T

tdy,
I <exp (_n2 2’J> .
o

To bound the 11, we prove is a sub-Gaussian first. As

By Lemma 13.12, we have

o o
sup — sup —
n n

“anS\/ t‘SnJ ”anS\/ tén,j

we have SUD |01 < JB 2 |w;gi(Xij)| is = \/t0n,;— Lipschitz. Thus, SUP| < e 2 |w;gi(Xiz)| ~
sG(ﬁ\/t&l,j). Notice that 4 (8,.;) < 07 ; < t6y, ;.

n
> wigi(Xig)| —
=1

n
> wigi(Xij)
=1

ag
< ﬁvtén,jllw — |2,

ag
=1 S P sup E |wjgj(Xij)| Z 2t5n,j
lg;lln<+/tdn,;

41257
< exp _07’
(ﬁ t5n7j)2

= exp(—cntd, ;).
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Combine them together we prove the inequality 7. Consider union bound over d dimension, we get

Z

] 1

§ :wJ Xij)

i=1

(b) First, by Cauchy-Schwarz inequality, we have

ZIIA Il < Vd Z A3 < VAVE]|Al].

j=1

Notice that . 4
= = Z =29
j=1 j=1

By basic inequality,

A2 < dtdn max + V/10nmax VAK | Al < dtdy masx + t0n maxdK

= ||AH’!L < C3Kdt6n max — C3Kd(s

n,max*

The last equal sign follows by choosing t = 6y, max-
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6.4 Properties of Kullback-Leibler divergence (Wainwright 15.3)
Solution 38. (a) By Jensen’s inequality and logx is a concave function of x.
_ Q(x) Q@) o1
D(P||Q) = /P d —/P(aﬁ)log P dmglog/P(x)P(I) dz =logl =0.

Thus D(P||Q) > 0 and the equality holds if and only if P(x) = Q(x) a.s., which means p(x) = q(x)
a.s..

(b) As D(P||Q) = D(Q||P), we only need to prove the first equation.

2t Aiby(e)
Z/\PHQ /Z)\P Jlog =5y da

We only need to prove that

/Z)\ij(x)log (Z )\ij(x)) dz < Z)\ / z) log P;(x) d,

which follows the Jensen’s inequality and that xlogx is a convex function of x.
(¢) Notice that

1 dP1 X P2 1 Pl + 1 P2

og ———— =log — + log —.

510, @ Qs 5 50

Thus we have

dP ® Py
d@Q1 ® Q2

By mathematical induction, we get the result immediately.

D(P&P|Q1Qs) = Enon, [log } Ep, [log 5 }HEpz [log - } — D(PL[|Q1)+ D(P2]|Qa).
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6.5 Bounds on the TV distance (Wainwright 15.10)
Solution 39. (a) By definition,

1P~ Qlrv = 5 [ Ipls) - aa)lv(do).

So, we only need to check

</ Ip(x) — cz(%)ll/(dx)>2 < /Z((”;);u(dx) —1.

By Cauchy-Schwarz inequality, we have

(f1vte) —q<x>|v<da:>)2 </ Wumx)} [ atawtan) = [ P aw)

(b) We have
1 (x —0)2 B x?
p(x) = Noroe exp (— 572 ) and q(z) = — exp <—%‘2 .
Xn

Denote pp(z) = p(x)®" and g, (z) = q(x)®" We have

pa(r)? 1 22 20x 62 " (v
d == —_ _— = — d = g
v = ([ ez (ot 5~ m) ) =¥
which leads to the result.
(c) We have

) = 3o () e (<) o) = e (-

Denote pp(z) = p(x)®" and g, (z) = q(x)®" We have

/p”(x)zy(dm) - (iA +3B+ iC)n

where

1 2 2 2 0\2
A:/ eXp(—x—l—eQx—e)dx:e(a),
o

Combine them together, we get the result,

1 1 1 \" Vo) 2
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6.6 KL divergence for multivariate Gaussian (Wainwright 15.13)
Solution 40. (a) We prove (b) first, and (a) directly follows from (b).

(b) We have
B o ()| = Bu 5108 (Gorig) ) + 50— 0 55 o = ) = 5o = ) 5 )

1 det(X2) 1 _ 1 _ 1 _
=5 log <det(21) + §<u1 — 12, B3 (1 — p2)) + §Eq1 tr(Sy e ) — §Eq1 tr(Sy wa )

! {<m S5 (s — )+ log (3222??3) (s —d}.
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6.7 Sharper bounds for Gaussian location family (Wainwright 15.8)

Solution 41. Denote the minimaz lower bound as A .
(a) Use Le Cam’s two point method and Pinsker inequality, we have

52 " " 52 1 52 2n4? o?
///>2(1—||P25—P0||Tv)>2<1— 2D(P%||P6L)> :(1— 3 >:16n’

02

where we choose 62 = T
(b) Use Le Cam’s two point method and Le Cam’s inequality, we have

52 52 H2(P~||Pr
A2 (=B - Bl 2 (1H<P53|P5L>J1( B 0’).

First, we calculate the squared Hellinger distance

52
2

Thus, we have

n || pn 62 nd?
H?(Pgs||Pg) < n <2 — 2exp <%€2)> < —-

2
As a result, we can choose §% = & and get

52 V15
> — |1 - —.
%_8n< 8)

(c) Use Le Cam’s two point method and Problem 6.5, we can choose §% = % and get

52 52 1./ ans? 2 1
%>2(1_”P2T%_P61”TV)>2< '3 —1>:0<1—\/e—1>.

1-— =
2 8n 2
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6.8 Lower bounds for generalized linear models (Wainwright 15.17)

Solution 42. (a) By tensorization properties of KL divergence

Py(ys) log (P A )

D(P||Py) =Y Py (1)

/ Pe(yi)ﬁ (0i((21,6 — 0) — D(2,,0) + B(2,,0')))

= 3 B ({0 — 0 — B(1,6) + 0(01,))

1 :/Pg(y)

— 0= @m@) — By[Y] — ®/((x,0)).

Thus substitute the result into the calculation of the KL divergence, we have

By taking derivatives on both sides

DIRIPy) = 55 D @' (@.0)) (@00 = ) = B(a1.0) + (.. 0)

s(o)

(b) By Taylor’s expansion, we have

(2, 0) = B((x,0)) + @ ((2,0)) ((2.6) — (2, 0)) + T ((2,0) — (,0))*

Thus, the KL-divergence can be bounded by

DIRIPY) = S5 S0 ® (0. 0) (s (02,0 — ) = B 6) + Bz )
1 L , 9
< 5(0) aamaX(X)Hg —0l3.

(¢) By Fano’s method, we have

{”é\, 9”3} > 42 <1 ~ maxgeen D(I%||P) +10g«2> 7

inf sup E Tog M

0 0eBd(1)

where A is a 26 packing. Notice © = {0 € R : |||z < 1}, thus choose the net with covering number

1 d

1
= log|.#| > dlog <1 + 26)
By part (b), we have

L Lo
S(U) 2 nmax
——

c

D(Py||Py) < %

N b

Toax (X0 — 0|3 = n||6 — 0’2 < cn - 1652

Combine them together and we get

~ 1662 + log 2
inf sup E {HQ - 9||§} > 6° (1 - CH—ng) .
0 6eBd(1) dlog(1 + 35)

o1



Case 1 If cn < 100d, then choose 62 = cy, where ¢ is some constant number. Thus we have

inf sup E [0 ]3| > 1
6 6ecBd(1)

Case 2 If cn > 100d, then choose 62 = %. Thus we have

c

~ d
inf sup E[HG—@H%} >c- 8(;7) C—.
9 0eBd(1) Ln n

max

Thus, we have

~ d
inf sup IE[HG—GH%} 2min{1,c~s(2g)~},
6 6cB3(1) anax n

(d) Choose y; = (x;,0) + ow; where w; ~ A(0,1). We have

1 w1 (yim,e)fi(”fﬂ><1>(<xi,e>)
e 2%e .
V2r

Choose ®(t) = %, whose second derivative is bounded, and we get a special case of part (c).

Po(yi) =

Remark 6.2. The upper bound and minimaz lower bound of regression are both the order %,
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