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1 Homework 1

1.1 Mills ratio (Wainwright 2.2)

Solution 1. (a)

ϕ′(z) = −z 1

2π
e−z2/2 = −zϕ(z).

(b) By the results of (a), we have

P(Z ≥ z) =

∫ ∞

z

ϕ(t) dt = −
∫ ∞

z

ϕ′(t)

t
dt.

Notice that ((
1

t
− 1

t3

)
ϕ(t)

)′

=
ϕ′(t)

t
+

3

t4
ϕ(t) ≥ 1

t
ϕ′(t)

and ((
1

t
− 1

t3
+

3

t5

)
ϕ(t)

)′

=
ϕ′(t)

t
− 15

t6
ϕ(t) ≤ ϕ′(t)

t
.

and we derive the proof.
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1.2 Sharp sub-Gaussian parameter for bounded random variable (Wain-
wright 2.4)

Solution 2. (a)We have
ϕ(0) = logE1 = log 1 = 0,

and

ϕ′(0) =
EXeλX

EeλX
|λ=0= EX = µ.

(b)By derivation, we have

ϕ′′(λ) =
EX2eλX

EeλX
−
(
EXeλX

EeλX

)2

= Eλ[X
2]− (EλX)2.

We denote qλ(X) = eλX

EeλX , and we have

sup
λ∈R

ϕ′′(λ) ≤ sup
q is a density function

Varq(X) ≤ (b− a)2

4
.

(c) By taylor’s expansion, we have

logEeλX = ϕ(λ) = ϕ(0) + ϕ′(0)λ+

∫ λ

0

ϕ′′(s)(λ− s) ds ≤ µλ+
(b− a)2

4
· λ

2

2
,

which implies that

Eeλ(X−µ) ≤ (b− a)2λ2

8
.

And thus, σ = b−a
2 .
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1.3 Bennett’s inequality (Wainwright 2.7)

Solution 3. (a) By Taylor’s expansion, we have

EeλXi = E
∞∑
k=0

(λXi)
k

k!
≤ 1 +

∞∑
k=2

λkbk−2

k!
σ2
i ≤ 1 + λ2σ2

i

(
eλb − 1− λb

λ2b2

)
≤ exp

(
λ2σ2

i

(
eλb − 1− λb

λ2b2

))
,

which gives the proof of (a).
Revise: we need to analyze λ < 0 separately. In fact, notice that we can replace −Xi with Xi

without affecting the condition or the result, allowing us to assume λ > 0.
(b) By Markov’s inequality,

LHS ≤ e−λnδEeλ
∑N

i=1 Xi

≤ e−λnδ
n∏

i=1

exp

(
λ2σ2

i

(
eλb − 1− λb

λ2b2

))
= e−λnδ exp

(
λ2σ2

(
eλb − 1− λb

λ2b2

))
= exp

(
−nδ
b

log

(
1 +

bδ

σ2

)
+
nσ2

b2

(
bδ

σ2
− log

(
1 +

bδ

σ2

)))
.

where the second line follows by (a), and the fourth line follows by choosing λ = 1
b log

(
1 + bnδ

σ2

)
. Let

t = bδ
σ2 , and we have

LHS ≤ exp

(
−nσ

2

b2
(log(1 + t)− t+ t log(1 + t))

)
= RHS.

(c)We only need to prove

exp

{
−nσ

2

b2
h

(
bδ

σ2

)}
≤ exp

(
−n δ2

2(σ2 + bδ)

)
.

The right hand side is Bernstein’s inequality, and the inequality is equivalent to

h(t) ≥ t2

2(1 + t)
.

Notice that
1

1 + t
≥ 1

(1 + t)3
,

we have

h′(t) = log(1 + t) ≥ t2 + 2t

2(1 + t)2
,

which implies

h(t) ≥ t2

2(1 + t)
.
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1.4 Sharp upper bounds on binomial tails (Wainwright 2.9)

Solution 4. (a) By Markov’s inequality, we have

P(Zn ≤ δn) = P(e−λZn ≥ e−λδn) ≤ eλδnEe−λZn = exp(λδn+ n log(1− α+ αe−λ))

Let λ = − log
(
δ
α

)
− log

(
1−δ
1−α

)
, and we have

P(Zn ≤ δn) ≤ exp(−nD(δ||α)).

(b) We only need to show that
D(δ||α) ≥ 2(δ − α)2.

For α > δ, we have
α− δ

α(1− α)
≥ 4(α− δ),

and hence

D(δ||α) = δ log

(
δ

α

)
+ (1− δ) log

(
1− δ

1− α

)
≥ 2(δ − α)2.
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1.5 Upper bounds for sub-Gaussian maxima (Wainwright 2.12)

Solution 5. (a) We have

E max
1≤i≤n

Xi =
1

λ
E log( max

1≤i≤n
eλXi)

≤ 1

λ
log max

1≤i≤n
EeλXi

≤ 1

λ
log

(
N∑
i=1

EeλXi

)

=
1

λ
(logN +

λ2σ2

2
).

where the second line follows from Jensen’s inequality. Let λ =
√
2 logN
σ , we have

E max
1≤i≤n

Xi ≤
√

2σ2 log n.

(b) Consider {X1, ..., Xn,−X1, ...,−Xn} and apply the results in (a), we have

E[Z] ≤
√

2σ2 log(2n) ≤ 2
√
σ2 log n
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1.6 Operations on sub-Gaussian variables (Wainwright 2.13)

Solution 6. (a) Since X1 and X2 are independent, we have

Eeλ(X1+X2) = EeλX1EeλX2 ≤ eλ
2σ2

1/2eλ
2σ2

2/2 = eλ
2(σ2

1+σ2
2)/2

So X1 +X2 is sub-Gaussian with parameter
√
σ2
1 + σ2

2.
(b)(c) Notice that

σ1 + σ2 ≤
√
2
√
σ2
1 + σ2

2 ,

we only need to prove (c). By Hölder’s inequality, we have

Eeλ(X1+X2) ≤ (EepλX1)1/p(EeqλX2)1/q ≤ exp

(
pλ2σ2

1 + qλ2σ2
2

2

)
choose p = σ1+σ2

σ1
and q = σ1+σ2

σ2
,

Eeλ(X1+X2) ≤ exp

(
λ2(σ1 + σ2)

2

2

)
.

So X1 +X2 is sub-Gaussian with parameter σ1 + σ2.
(d) Notice that, by property 2 of the sub-Gaussian random variable,

E|X1|p ≤ Cp
1σ

p
1p

p
2 ,

E|X2|p ≤ Cp
2σ

p
2p

p
2 ,

for any p ∈ Z. By Cauchy-Schwarz inequality,

(E|X1X2|p)
1
p ≤ (E|X1|2p)

1
2p (E|X2|2p)

1
2p ≤ 2C1C2σ1σ2p

By property 2 and property 5 of sub-Exponential random variable (Vershynin Proposition 2.7.1), we
have

E exp(λX1X2) ≤ exp(C2σ2
1σ

2
2λ

2) for |λ| ≤ 1

Cσ1σ2
.

We have X1X2 is sub-Exponential with parameter (Cσ1σ2, Cσ1σ2)
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1.7 Robust estimation of the mean (Vershynin 2.2.9)

Solution 7. (a)By Hoeffding’s inequality, we have

P(|µ̂− µ| > ϵ) ≤ 2 exp

(
−n ϵ2

2σ2

)
=: δ.

Hence, we have that

n =
2σ2

ϵ2
log

(
2

δ

)
which is the number of the required samples.

(b)By Markov’s inequality

P(|µ̂− µ| > ϵ) ≤ 2
Var(µ̂)

ϵ2
=

2σ2

nϵ2
=

1

4
.

Hence, we have that

n =
8σ2

ϵ2
.

(c)Let n = mk, where m ∈ Z. By (b), when m ≥ 32σ2

ϵ2 , we have

P(|Yi − µ| > ϵ) ≤ 1

16

WLOG, assume k is an even number. Let µ̂ = medium(Y1, ..., Yk), we have

P(|µ̂− µ| > ϵ) =

k∑
i=k/2

(
k

i

)(
1

16

)i

≤ 1

4k

k∑
i=0

(
k

i

)
=

1

2k
= δ.

When k = O(log 1
δ ), then w.p ≥ 1− δ

|µ̂− µ| < ϵ,

so the sample size n = mk = O(σ
2

ϵ2 log 1
δ ).
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1.8 Survey question

problem 1: 20 min
problem 2: 20 min
problem 3: 50 min
problem 4: 10 min
problem 5: 15 min
problem 6: 40 min
problem 7: 40 min

10



2 Homework 2

2.1 Tail bound and almost sure convergence

Solution 8. By Borel-Cantalli lemma and

∞∑
n=1

P(|Xn −X| > t) ≤
∞∑

n=1

δn,t =

∞∑
n=1

2 exp(−nt
2

2
) <∞,

we know that
P(lim sup

n→∞
|Xn −X| ≥ t) = 0,

which implies almost surely convergence.
For δn,t =

1√
nt2

,
∞∑

n=1

P(|Xn −X| > t) ≤
∞∑

n=1

δn,t =

∞∑
n=1

1√
nt2

= ∞,

and by Borel-Cantalli lemma
P(lim sup

n→∞
|Xn −X| ≥ t) = 1,

which doesn’t imply almost surely convergence.
For δn,t =

1
nt2 ,

∞∑
n=1

P(|Xn −X| > t) ≤
∞∑

n=1

δn,t =

∞∑
n=1

1

nt2
= ∞,

and by Borel-Cantalli lemma
P(lim sup

n→∞
|Xn −X| ≥ t) = 1,

which doesn’t imply almost surely convergence.
For δn,t =

1
n2t4 ,

∞∑
n=1

P(|Xn −X| > t) ≤
∞∑

n=1

δn,t =

∞∑
n=1

1

n2t4
<∞,

and by Borel-Cantalli lemma
P(lim sup

n→∞
|Xn −X| ≥ t) = 0,

which implies almost surely convergence.
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2.2 Maximal version of Freedman’s inequality

Solution 9. Let XK = exp
(
λ
∑K

k=1Dk − λ
∑K

k=1
ν2
k

2

)
, by the condition

E[XK |FK−1] = XK−1 · e−λ2ν2
K/2E[eλDK |FK−1] ≤ XK−1,

we have {(Xk,Fk)} is a super-martingale. By Doob’s maximal inequality (super-martingale version):

P

(
max

1≤K≤T

K∑
k=1

Dk −
K∑

k=1

ν2k
2
> t

)
= P

(
max

1≤K≤T
exp

(
λ

K∑
k=1

Dk − λ

K∑
k=1

ν2k
2

)
> eλt

)
≤ e−λt(E[max(X0, 0)])

≤ e−λt

Choose t = log(1/δ)
λ , and we get the result.

Then, we choose

λ = min

{
1

α
,

√
2 log(1/δ)

v∗

}
,

and we have w.p. ≥ 1− δ,

sup
1≤K≤T

K∑
k=1

Dk < C ·max{ν∗
√

log(1/δ), α log(1/δ)}.
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2.3 Concentration and kernel density estimation

Solution 10. We prove that the function g(X1, ..., Xn) = ∥f̂ − f∥(X1, ..., Xn) is ( 2n , ...,
2
n )-bounded

differential.

∥g(X1, ..., Xi, ..., Xn)− g(X1, ..., X
′
i, ..., Xn)∥ ≤ 1

nh
∥K(

x−Xi

h
)−K(

x−X ′
i

h
)∥1

≤ 1

n
(∥K(x− hXi)∥+ ∥K(x− hX ′

i)∥)

=
2

n

By the concentration inequality of bounded difference function, have g(X1, ..., Xn) is sG( 2√
n
), which

implies

P
(
∥f̂n − f∥1 ≥ E∥f̂n − f∥1 + δ

)
≤ e−

nδ2

8 .
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2.4 Concentration for spin glasses

Solution 11. (a) Observe that Fd(θ) = log
∑

x∈{±1}d exp{ 1√
d
x⊤θx}. We have

∂

∂θ
Fd(θ) =

1√
d

∑
x∈{±1}d exp{ 1√

d
x⊤θx}(xx⊤)∑

x∈{±1}d exp{ 1√
d
x⊤θx}

and
∂2

∂θ2
Fd(θ) =

1

d

∑
x∈{±1}d exp{ 1√

d
x⊤θx}(xx⊤)⊗2∑

x∈{±1}d exp{ 1√
d
x⊤θx}

.

We have

U⊤ ∂2

∂θ2
Fd(θ)U =

1

d

∑
x∈{±1}d exp{ 1√

d
x⊤θx}(tr(Uxx⊤)2∑

x∈{±1}d exp{ 1√
d
x⊤θx}

≥ 0.

Thus, Fd is a convex function.
(b) Notice that

∥ ∂
∂θ
Fd(θ)∥2 ≤

∥∥∥∥∥
∑

x∈{±1}d exp{ 1√
d
x⊤θx}(xx⊤)∑

x∈{±1}d exp{ 1√
d
x⊤θx}

∥∥∥∥∥
2

≤ ∥xx⊤∥2 ≤ d,

by mean value theorem, we have

∥Fd(θ)− Fd(θ
′)∥2 ≤

√
d∥θ − θ′∥2.

(c) First, we give the lower bound of the E[Fd(θ)
d ]. By Jensen’s inequality,

E
[
Fd(θ)

d

]
≥ 1

d
log

 ∑
x∈{±1}d

E[exp{ 1√
d
x⊤θx}]


= log 2 +

1

d
logE[exp{ 1√

d
x⊤θx}]

≥ log 2 +
1

d

d∑
1

logE[exp{ 1√
d
θii}] +

1

d

∑
i<j

logE[exp{ 1√
d
θij}]

≥ log 2 +
d

4
β2.

Then, we prove the concentration inequality. Given that Fd

d is 1√
d
−Lipschitz, we have

P
(
Fd(θ)

d
− E

[
Fd(θ)

d

]
≥ t

)
≤ e−t2d/(2β2), for all t > 0.

Combine them together and we get

P
(
Fd(θ)

d
≥ log 2 +

β2

4
+ t

)
≤ 2e

− t2d
2β2 for all t > 0.
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Figure 1: Theorem 3.26

2.5 Rademacher chaos variables

Solution 12. (a) We let f(ϵ) = ∥Q1/2ϵ∥2 and we know f(x) ∈ (−
√
d∥Q1/2∥op,

√
d∥Q1/2∥op) as

x ∈ {±1}d. By concentration inequality for Lipschitz function (Theorem 3.26 in the [2] as the figure
1 shows):

P(f(ϵ)− E[f(ϵ)] ≥ t) ≤ exp(− dt2

16d∥Q∥2op
) = exp(− t2

16∥Q∥2op
).

As E[f(ϵ)] ≤ (E[f(ϵ)2])1/2 =
√
tr(Q), we derive the result directly!

(b) (I am inspired by [1] Lemma 6.2.2) We can write

Y = ⟨ϵ′,Mϵ⟩.

Since
E[eλ⟨ϵ

′,Mϵ⟩] ≤ exp(λ2∥Mϵ∥2/2),

So ⟨ϵ′,Mϵ⟩ is sG(∥Mϵ∥) and

P(Y ≥ δ | ϵ) ≤ exp(− δ2

2∥Mϵ∥22
).

By (a), we have

P(∥Mϵ∥22 ≥ (∥M∥F + t)2) ≤ exp(− t2

16∥M∥2op
)

Thus

P(Y ≥ δ) ≤ exp(− t2

16∥M∥2op
) + exp(− δ2

2(∥M∥F + t)2
)

≤ exp(− t2

16∥M∥2op
) + exp(− δ2

4(∥M∥2F + t2)
)

≤ 2 exp(− δ2

4∥M∥2F + 16δ∥M∥op
)

The last line follows by choosing t2 = 2δ∥M∥op.
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2.6 Maximum likelihood and uniform laws

Solution 13. (a) By definition, for Bernoulli,

R(θ, θ∗) =
1

1 + eθ∗
log

(
1/(1 + eθ∗)

1/(1 + eθ)

)
+

eθ∗

1 + eθ∗
log

(
eθ∗/(1 + eθ∗)

eθ/(1 + eθ)

)
=

eθ∗

1 + eθ∗
(θ∗ − θ) + log(1 + eθ)− log(1 + eθ∗).

For Poisson,

R(θ, θ∗) =

∞∑
x=0

pθ∗(x)(θ∗x− exp(θ∗)− θx+ exp(θ))

= eθ − eθ∗ + (θ∗ − θ)eθ∗ .

For multivariate Gaussian,

R(θ, θ∗) =

∫ [
1

2
(x− θ)⊤Σ−1(x− θ)− 1

2
(x− θ∗)

⊤Σ−1(x− θ∗)

]
· 1√

(2π)d|Σ|
exp

{
−1

2
(x− θ∗)

⊤Σ−1(x− θ∗)

}
dx

=
1

2
(θ − θ∗)

⊤Σ−1(θ − θ∗)−
∫
(θ − θ∗)

⊤Σ−1y · 1√
(2π)d|Σ|

exp

{
−1

2
y⊤Σ−1y

}
dy

=
1

2
(θ − θ∗)

⊤Σ−1(θ − θ∗)− (θ − θ∗)
⊤Σ−1/2

∫
z

1√
(2π)d

exp

{
−1

2
z⊤z

}
dz

=
1

2
(θ − θ∗)

⊤Σ−1(θ − θ∗).

(b) For Bernoulli,

θ̂ = log

∑n
i=1Xi

n−
∑n

i=1Xi
,

where we assume
∑

iXi ∈ (0, n).

E(θ̂, θ∗) = R(θ̂, θ∗) =
eθ∗

1 + eθ∗
(θ∗ − log

∑n
i=1Xi

n−
∑n

i=1Xi
) + log

n

n−
∑n

i=1Xi
− log(1 + eθ∗).

For Poisson,

θ̂ = log

n∑
i=1

Xi.

E(θ̂, θ∗) = R(θ̂, θ∗) =

n∑
i=1

Xi − eθ∗ + (θ∗ − log

n∑
i=1

Xi)e
θ∗ .

For multivariate Gaussian,

θ̂ =
1

n

n∑
i=1

Xi.

E(θ̂, θ∗) = R(θ̂, θ∗) =
1

2
(
1

n

n∑
i=1

Xi − θ∗)
⊤Σ−1(

1

n

n∑
i=1

Xi − θ∗).
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Now we give an upper bound on the excess risk. Let Empirical risk Rn(θ) =
1
n

∑n
i=1[log(pθ∗(Xi))−

log(pθ(Xi))] and population risk R(θ) = R(θ; θ∗).

R(θ̂, θ∗) = EXi
[R(θ̂)−Rn(θ̂) +Rn(θ̂)−Rn(θ∗) +Rn(θ∗)−R(θ∗)]

≤ 2EXi
[sup

θ
|R(θ)−Rn(θ)|]

We can write the expectation as

R(θ) = EX′
i

[
1

n
R′

n(θ)

]
,

and we have

R(θ̂, θ∗) ≤ 2EXi
[sup

θ
EX′

i
[|R′

n(θ)−Rn(θ)|]]

≤ 2EXi,X′
i
[sup

θ
|R′

n(θ)−Rn(θ)|]

= 2EXi,X′
i,ϵi∼Unif{±1}[sup

θ
|ϵi(R′

n(θ)−Rn(θ))|

= 2EXi,X′
i,ϵi∼Unif{±1}[sup

θ
|ϵi(log pθ(Xi)− log pθ(X

′
i))|]

≤ 4EXiϵi∼Unif{±1}[sup
θ

|ϵi log pθ(Xi)|]

= 4Rn(F ),

where F = {log pθ(·) : θ ∈ Ω}, and Rn(·) is the Radamacher complexity, whose definition is

Rn(F ) = EXi,ϵi∈Unif{±1} sup
f∈F

1

n
|

n∑
i=1

ϵif(Xi)|.

For Bernoulli:
FBernoulli = {fθ(x) = θx− log(1 + eθ) : x ∈ {0, 1}, θ ∈ Ω}.

For Poisson:

Fpoisson = {fθ(x) = θx− exp(θ)−
x∑

i=1

log i : x ∈ N, θ ∈ Ω}.

For multivariate Gaussian:

Fmulti−gaussian =

{
fθ(x) = −1

2
(x− θ)⊤Σ−1(x− θ)− 1

2
log(2π|Σ|) : x ∈ R, θ ∈ Ω

}

17



2.7 Basic properties of Rademacher complexity

Solution 14. (a) We have

Rn(conv(F )) = Eϵ,Xi [
1

n
sup

f∈conv(F)

n∑
i=1

ϵif(Xi)]

≤ Eϵ,Xi
[
1

n
sup
f∈F

n∑
i=1

ϵif(Xi)] = Rn(F )) ≤ Rn(conv(F )).

The first inequality follows from the convexity of sup and the second inequality follows from the fact
that F ⊂ conv(F ).

(b) We have

Rn(F + G ) = Eϵ,Xi
[
1

n
sup
f∈F

n∑
i=1

ϵi(f(Xi) + g(Xi))]

≤ Eϵ,Xi
[
1

n
sup
f∈F

n∑
i=1

ϵif(Xi)] + Eϵ,Xi
[
1

n
sup
g∈F

n∑
i=1

ϵig(Xi)] = Rn(F ) + Rn(G )

If we choose F = G , we have

Rn(F + G ) = Rn(2F ) = 2Rn(F ),

the equation holds, which implies the bound is tight (cannot be improved in general).
(c) We have

Rn(F + g) = Eϵ,Xi [
1

n
sup
f∈F

n∑
i=1

ϵi(f(Xi) + g(Xi))]

≤ Eϵ,Xi [
1

n
sup
f∈F

n∑
i=1

ϵif(Xi)] + Eϵ,Xi [
1

n

n∑
i=1

ϵig(Xi)]

≤ R(F ) +
1

n
(E[

n∑
i=1

ϵ2i ])1/2(E[
n∑

i=1

g(Xi)
2 ])1/2

= R(F ) +
1√
n
∥g∥2

≤ R(F ) +
1√
n
∥g∥∞.

The second inequality is Cauchy-Schwarz inequality. The last line follows from

∥g∥2 ≤ ∥g∥∞.
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3 Homework 3

3.1 Gaussian and Rademacher complexity (Wainwright 5.5)

Solution 15. Recall that the definition of the Gaussian and Rademacher complexity of a set is

G (T) =
1

d
Ewi∼N (0,1)

[
sup
ai∈T

d∑
i=1

wiai

]
,

R(T) =
1

d
Eσi∼Unif{±1}

[
sup
ai∈T

d∑
i=1

σiai

]
.

(a) By Jensen’s inequality

G (T) =
1

d
Eσi∼Unif{±1}Ewi

[
sup
ai∈T

d∑
i=1

|wi|σiai

]

≥ 1

d
Eσi∼Unif{±1}

[
sup
ai∈T

d∑
i=1

σiai

]
· Ewi [|wi|]

=

√
2

π

1

d
Eσi∼Unif{±1}

[
sup
ai∈T

d∑
i=1

σiai

]

=

√
2

π
R(T).

(b) Consider contraction ψr(x) =
⟨r,x⟩

max1≤i≤d ri
, we have

R(T) ≥ E[R(ψw(T))].

Thus,

G (T) =
1

d
Ewi∼N (0,1)

[
sup
ai∈T

d∑
i=1

wiai

]
≤ E[ max

1≤i≤d
|wi|] · R(T) ≤

√
2 log d · R(T)
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3.2 Maximal inequality for sub-exponential random variables

Solution 16. We have

E
[
max
i∈[n]

|Xi|
]
≤ 1

λ
logE

[
max
i∈[n]

[exp(λ|Xi|)]
]

≤ 1

λ
logE

∑
i∈[n]

exp(λ|Xi|)


≤ 1

λ
(log(2n) + logE [exp(λXi)])

Recall the properties of sub-Exponential random variables, we have

log exp(λXi) ≤
1

2
λ2α2

1, for λ ≤ 1

α2
.

Thus,

E
[
max
i∈[n]

|Xi|
]
≤ inf

λ≤ 1
α2

1

λ

(
log(2n) +

1

2
λ2α2

1

)
.

If

√
2 log(2n)

α1
≤ 1

α2
,

E
[
max
i∈[n]

|Xi|
]
≤

√
2α1

√
log(2n).

If

√
2 log(2n)

α1
> 1

α2
,

E
[
max
i∈[n]

|Xi|
]
≤ α2 log(2n) +

α2
1

2α2
≤ α2 log(2n) +

√
2

2
α1

√
log(2n)

To conclude, we get

E
[
max
i∈[n]

|Xi|
]
≤ C

[
α1

√
log(2n) + α2 log(2n)

]
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3.3 Covering numbers for low-rank matrices (Duchi 7.8)

Solution 17. By singular decomposition, we can write

A =

r∑
i=1

σiuiv
⊤
i ,

where
∑r

i=1 σ
2
i = 1. By triangle inequality, we have

∥A−A′∥F ≤
r∑

i=1

∥σiui − σ′
iu

′
i∥2 +

r∑
i=1

∥vi − v′i∥2.

Thus, we can bound the covering number of ϵ−net of the right hand side Mr,d

N(ϵ,Mr,d, ∥ · ∥F ) ≤ N(ϵ/2r,Bd(1), ∥ · ∥2)2r ≤
(
1 +

4r

ϵ

)2rd

where the inequality follows from the proposition in the textbook:

N(ϵ/2r,Bd(1), ∥ · ∥2) ≤
vol(B(1 + ϵ/4r))

vol(B(ϵ/4r))
≤
(
1 +

4r

ϵ

)d

and both σiui and vi are in the unit ball Bd(1). Taking the logarithm on both sides, we obtain

logN(ϵ,Mr,d, ∥ · ∥F ) ≤ 2rd log(1 + 4r/ϵ).
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3.4 Rademacher complexity bound of Lipschitz functions on [0, 1]d

Solution 18. (a) First, we denote N as the ϵ-covering of F d
L. We can prove that

|N | = N(ϵ;F d
L, ∥ · ∥∞) ≤ exp

((
L

ϵ

)d
)
.

Second, we consider the random variable 1
n

∑n
i=1 ϵif(xi).

logE[exp(
1

n

n∑
i=1

ϵif(xi))] ≤ n log exp

(
L2

2n2

)
=
L2

2n
,

thus 1
n

∑n
i=1 ϵif(xi) is sG(

L√
n
) random variable.

By one step discretization,

Rn(F
d
L) = Exi,ϵi

[
sup

f∈Fd
L

| 1
n

n∑
i=1

ϵif(xi)|

]

≤ Exi,ϵi

[
sup

∥f−f ′∥∞≤ϵ

| 1
n

n∑
i=1

ϵi(f(xi)− f ′(xi))|

]
+ Exi,ϵi

[
sup
f∈N

| 1
n

n∑
i=1

ϵif(xi)

]

≤ ϵ+
√
2σ2N(ϵ;F d

L, ∥ · ∥∞)

≤ ϵ+

√
2
L2

n

(
L

ϵ

)d

≍ ϵ+
L1+d/2

√
n

ϵ−d/2.

Choose ϵ = Ln−
1

d+2 , we have

Rn(F
d
L) ≲ Ln−

1
d+2 .

(b) Using Dudley’s entropy integral method,

Rn(F
d
L) ≲ ϵ+

1√
n

∫ 2L

ϵ

√
logN(u;F d

L, ∥ · ∥∞) du

≤ ϵ+
1√
n

∫ 2L

ϵ

(
L

u

)d/2

du

= ϵ+
L√
n

∫ 2

ϵ/L

u−d/2 du.

If d = 1, ∫ 2

ϵ/L

u−d/2 du ≤ 2
√
2.

Choose ϵ = 0, and we have

Rn(F
d
L) ≲

L√
n
.

If d = 2, ∫ 2

ϵ/L

u−d/2 du = log 2− log
( ϵ
L

)
= log 2 + logL− log ϵ.
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Choose ϵ = L√
n
, and we have

Rn(F
d
L) ≲

L√
n

(
1 + log 2 +

1

2
log n

)
≲

L√
n
(1 + log n).

If d ≥ 3, ∫ 2

ϵ/L

u−d/2 du ≤ 2

d− 2

(
L

ϵ

) d
2−1

.

Choose ϵ = Ln−1/d, and we have
Rn(F

d
L) ≲ Ln−1/d.
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3.5 Upper bounds for l0-“balls” (Wainwright 5.7)

Solution 19. (a) We have

G (Ts
d) = Ew∼N (0,Id)

[
sup
θ∈Ts

d

⟨θ, w⟩

]
= Ew∼N (0,Id)

[
max
|S|=s

∥wS∥2
]

The second equality follows from Cauchy-Schwarz inequality

⟨θ, w⟩ ≤ ∥wS∥2∥θ∥2 ≤ ∥wS∥2,

and the ”=” holds when θ = wS/∥wS∥2.
(b) By Cauchy-Schwarz inequality,

E[∥wS∥2] ≤
√

E[∥wS∥22] =
√
s,

As w 7→ ∥wS∥2 is 1−Lipchitz and w is a normal Gaussian random variable, we can prove that ∥wS∥2
is sG(1), which leads to the result.

(c) By maximal inequality.

E [max
S

∥wS∥2] ≤
√
s+ E [max

S
|wS − E∥wS∥2|]

≤
√
s+

√
2σ2 log

((
d

s

))

≤
√
s+

√
2s log

(
ed

s

)

≲

√
s log

(
ed

s

)
.

The third line follows from (
d

s

)
≤ ds

s!
≤ ds

(s/e)s
=

(
ed

s

)s

.

The last line follows from

√
s ≤

√
s log e ≤

√
s log

(
ed

s

)
.
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3.6 Uniform laws and logistic loss (Duchi 7.1)

Solution 20. WLOG, we can assume n ≥ 2. Denote Xθ = 1
n

∑n
i=1mθ(Xi, Yi) −Mθ(X,Y ), Θ =

{θ ∈ Rd : ∥θ∥ ≤ r}, X = {x ∈ Rd : ∥x∥∗ ≤ M}, F = {mθ(z) : x ∈ X , y ∈ {±1}, θ ∈ Θ} Notice
that

mθ(Xi, Yi)−Mθ(X,Y ) ≤ sup
x∈X ,y∈{±1},θ∈Θ

log(1 + exp(−yθ⊤x))− inf
X∈X ,Y ∈{±1},θ∈Θ

log(1 + exp(−yθ⊤x))

≤ log(1 + eMr)− log(1 + e−Mr) ≤Mr.

From this, we have

• Xθ is sG(Mr√
n
) on θ.

• supθXθ is (Mr
n , ..., Mr

n )-bounded, which implies supθ(Xθ) is sG(
Mr√
n
) on z1, ..., zn.

As a result,

P(sup
θ
Xθ − E [sup

θ
Xθ] ≥ ϵ) ≤ exp

(
− nϵ2

2M2r2

)
.

By one-step discretization, we have

E [sup
θ
Xθ] ≤ inf

ϵ′

(
ϵ′ +

√
2
M2r2

n
logN(ϵ′;F , L∞)

)
. (1)

To bound the covering number of F , we next prove the Lipschitz condition of mθ.

∥mθ1(z)−mθ2(z)∥∞ = sup
x∈X ,y∈{±1}

⟨∂θ(x, y), θ1 − θ2⟩

≤ sup
x∈X ,y∈{±1}

⟨ exp(−yθ⊤x)
1 + exp(−yθ⊤x)

(−yx), θ1 − θ2⟩

≤ sup
x∈X

∥x∥∗∥θ1 − θ2∥

≤M∥θ1 − θ2∥.

So mθ(z) is an M -Lipschitz function and we can bound the covering number now.

N(ϵ′;F , L∞) ≤ N

(
ϵ′

M
; Θ, ∥ · ∥

)
≤ N

(
ϵ′

Mr
;Bd(1), ∥ · ∥

)
≤
(
Mr

ϵ′

)d

.

Substitute the covering number into the equation (1) and we have

E [sup
θ
Xθ] ≤ inf

ϵ′

(
ϵ′ +

√
2
M2r2

n
d log

(
Mr

ϵ′

))

≤ Mr√
n

+

√
M2r2

n
d log n

≲

√
M2r2

n
d log n.

The second line follows from choosing ϵ′ = Mr√
n
, and the third line holds if n ≥ 2. Then we choose

ϵn(δ) = C
√

r2M2

n

(
d log n+ log 1

δ

)
≥ E [supθXθ] +

√
2r2M2

n log 1
δ , thus

P(sup
θ
Xθ ≥ ϵ(δ)) ≤ P

(
sup
θ
Xθ − E [sup

θ
Xθ] ≥

√
2r2M2

n
log

1

δ

)
≤ δ.
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4 Homework 4

4.1 Lower bounds for l0-“balls”(Wainwright 5.8)

Solution 21. (a) Denote that

T =
{
θ ∈ Rd : θi ∈ {−s−1/2, 0, s1/2}, ∥θ∥0 ≤ s

}
⊂ T d(s),

and we have the inequlity of the covering number

N
(
1/
√
2;T d(s), ρEuc

)
≥ N

(
1/
√
2;T, ρEuc

)
.

Observe that for fixed point A ∈ T , we have

∣∣∣{x ∈ T : ρEuc(x,A) ≤ 1/
√
2}
∣∣∣ = |{x ∈ T : dHamming(x,A) ≤ s/2}| ≤

s/2−1∑
j=1

(
d

j

)
2j .

And we can get

N
(
1/
√
2;T, ρEuc

)
≥ 3d∑s/2−1

j=1

(
d
j

)
2j

≥ 3d

3s
(
d
s

)
≥ 3d

(3ed/s)s

≥
(
ed

s

)s

.

The last line is equivalent to

3d/2s ≥
√
3
ed

s
⇐⇒ 3k ≥ 3e2k2,

which can be proved by

3k ≥ (3k/6)6 ≥ (k/2)6 = k2
k4

64
≥ k2

214

64
≥ 3e2k2.

(b) By (a) and the properties of packing number

M(1/
√
2;T d(s), ρEuc) ≥ N(1/

√
2;T d(s), ρEuc) ≥

(
ed

s

)s

.

Define Guassian Process Xθ = ⟨w, θ⟩, G (T d(s)) = Ew

[
supθ∈Td(s)Xθ

]
. By Sudakov Minority,

Ew

[
sup

θ∈Td(s)

Xθ

]
≥ 1/

√
2

2

√
logM(1/

√
2;T d(s), ρEuc)

≳

√
s log

(
ed

s

)
.
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4.2 Sub-Gaussian matrices and mean bounds (Wainwright 6.8)

Solution 22. (a) First we prove that

E
[
eλ·λmax(Sn)

]
≤ de

λ2σ2

2n . (2)

Proof. We have

E
[
eλ·λmax(Sn)

]
≤ E

[
tr
(
eλSn

)]
≤ tr

(∏
i

(
E[e

λQi
n ]
))

.

Notice that

E[e
λQi
n ] ⪯ e

λ2Vi
2n2 ,

and we can get

tr

(∏
i

(
E[e

λQi
n ]
))

≤ tr

(
exp

(
n∑

i=1

λ2Vi
2n2

))
≤ d exp

∥∥∥∥∥
n∑

i=1

λ2Vi
2n2

∥∥∥∥∥
op

 ≤ de
λ2σ2

2n .

Then, by Jensen’s inequality,

E[λmax(Sn)] =
1

λ
E
[
log eλ·λmax(Sn)

]
≤ 1

λ
logE

[
eλ·λmax(Sn)

]
≤ log d

λ
+
λσ2

2n
.

Choose λ =
√
2n log d

σ and we derive the result.
(b) Define

Q̃i =

(
Qi 0
0 −Qi

)
,

S̃n =
∑n

i=1
1
n Q̃i, and use the result in (a) for S̃n,

E[λmax(S̃n)] ≤
√

2σ2 log(2d)

n
.

Notice that

λmax(S̃n) =

∥∥∥∥∥ 1n
n∑

i=1

Qi

∥∥∥∥∥
op

,

and we derive the result.
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4.3 Tail bounds for non-symmetric matrices (Wainwright 6.10)

Solution 23. (a) We have

∥Qi∥2op = λmax[Q
⊤
i Qi] = λmax

((
AiA

⊤
i 0

0 A⊤
i Ai

))
= λmax

(
AiA

⊤
i

)
= ∥Ai∥2op

which implies ∥Qi∥op = ∥Ai∥op.
(b) We have

Var(Qi) = E[Q2
i ] = E

[(
AiA

⊤
i 0

0 A⊤
i Ai

)]
,

thus ∥∥∥∥∥ 1n
n∑

i=1

Var(Qi)

∥∥∥∥∥
op

=

∥∥∥∥E [( 1
n

∑n
i=1AiA

⊤
i 0

0 1
n

∑n
i=1A

⊤
i Ai

)]∥∥∥∥
op

= max


∥∥∥∥∥ 1n

n∑
i=1

E[AiA
⊤
i ]

∥∥∥∥∥
op

,

∥∥∥∥∥ 1n
n∑

i=1

E[A⊤
i Ai]

∥∥∥∥∥
op

 = σ2.

(c) Denote that Sn =
∑n

i=1Qi, by conditions and (b),

∥Qi∥op ≤ b and ∥Var(Sn)∥op ≤ nσ2,

So by matrix Bernstein’s inequality, we have

P

∥∥∥∥∥
n∑

i=1

Ai

∥∥∥∥∥
op

≥ nδ

 ≤ 2(d1 + d2)e
− nδ2

2(σ2+bδ) .
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4.4 Pairwise incoherence (Wainwright 7.3)

Solution 24. (a) Assume v is the eigenvector according to the λmin, and |v1| = maxi |vi|. Assume

1

n
X⊤

S XS =

a11 · · · a1S
· · · · ·
aS1 · · · aSS

 .

By pairwise incoherence, we haveaii ∈ [1 − γ
s , 1 + γ

s ] and aij ∈ [−γ
s ,

γ
s ]. We compare the first

coordinate of the eigenvector

λminv1 =

s∑
i=1

a1ivi =⇒ a1 − λmin ≤
s∑

i=2

|vi|
|v1|

|a1i| =⇒ λmin ≥ 1− s
γ

s
= 1− γ =: c(γ).

(b) Assume ∆ ∈ Null
⋂
C(S), we have

X∆S = −X∆Sc and ∥∆S∥1 ≥ ∥∆∥Sc .

We know ∥∥∥∥X∆S√
n

∥∥∥∥2 ≥ λmin∥∆S∥22 ≥ (1− γ)∥∆S∥22.

On the other hand,∥∥∥∥X∆S√
n

∥∥∥∥2 =

〈
X∆S√
n
,−X∆Sc

√
n

〉
=

∣∣∣∣∆S

(
X⊤X

n
− I

)
∆Sc

∣∣∣∣ ≤ γ

s
∥∆S∥1∥∆Sc∥1 ≤

√
s
γ

s
∥∆S∥2∥∆Sc∥1.

Thus,

(1− γ)∥∆S∥22 ≤ γ√
s
∥∆S∥2∥∆Sc∥1 =⇒ (1− γ)∥∆S∥1 ≤

√
s(1− γ)∥∆S∥2 ≤ γ∥∆Sc∥1 ≤ γ∥∆S∥1.

If γ < 1
3 , then ∆S = 0 = ∆Sc , which implies that

Null
⋂

C(S) = ∅.
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4.5 Pairwise incoherence and RIP for isotropic ensembles (Wain- wright
7.7)

Solution 25. (a) Apply Bernstein’s inequality:

P
(
max
ij

|X⊤X/n− Id| ≥
1

3s

)
≤ dP

(∣∣∣∣∣ 1n
n∑

i=1

X2
1i − 1

∣∣∣∣∣ ≥ 1

3s

)
+ (d2 − d)P

(∣∣∣∣∣ 1n
n∑

i=1

X1iX2i

∣∣∣∣∣ ≥ 1

3s

)

≲ d2 exp

(
−Cnmin

{
1

s2
,
1

s

})
=: δ.

Solve the equation and we only need:

n ≳ s2 log

(
d2

δ

)
≳ s2 log

(
d

δ

)
(b) First, we fix |S| = s and bound the ∥X⊤

S XS/n−IS∥op. By concentration of sample covariance
of sub-Gaussian, we have

∥X⊤
S XS/n− IS∥op ≲

s+ log(1/δ1)

n
+

√
s+ log(1/δ1)

n
≤ 1

3
.

Choose

δ1

2s∑
i=1

(
d

k

)
≤ δ,

we have

δ1 ≤ δ(
d
2s

) ≤ δ

(
2s

ed

)2s

.

And we only need

n ≳ s+ s log

(
ed

2δs

)
≳ s log

(
ed

s
· 1
δ

)
.
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4.6 Weighted l1-norms (Wainwright 7.6)

Solution 26. (a) Statement: Let X̃ = ( 1
w1
X(1), · · · , 1

wd
X(d)), Null(X̃) = {∆ : X̃∆ = 0}. For

∆ ∈ Null(X̃), we have

max
|S|=k

∥∆S∥1 ≤ 1

2
∥∆∥1.

Proof. Let θ̃i = wi|θi|, we can rewrite the minimization problem as

min
θ̃∈Rd

∥θ̃∥1 such that X̃θ̃ = y.

The necessary and sufficient conditions for uniquely recovery are

Null(X̃)
⋂

C(S) = {0}

for all |S| = k. The condition can be written as: for ∆ ∈ Null(X̃), we have

max
|S|=k

∥∆S∥1 ≤ 1

2
∥∆∥1.

(b) Statement: The condition for recovery is:

cmin > 2
s

t
δPW (X).

Proof. Let θ ∈ Null(X̃), |S| = s, we’ll show that

∥θSc∥1 ≥ ∥θS∥1.

Notice that

0 = ∥X̃θ∥22 =

∥∥∥∥XSθS +
1

t
XScθSc

∥∥∥∥2
2

≥ θ⊤SX
⊤
S XSθS + 2

1

t
θScXScXSθS .

So we derive

1

s
cmin∥θS∥21 ≤ cmin∥θS∥22 = λmin

(
X⊤

S XS

n

)
∥θS∥22

≤θ⊤S
(
X⊤

S XS

n

)
θS ≤ 2

1

t
|θScXScXSθS | ≤ 2

1

t
∥θS∥1∥θSc∥1

∥∥∥∥X⊤
ScXS

n

∥∥∥∥
max

.

Thus
∥θSc∥1
∥θS∥1

≥ tcmin

2st
∥∥∥X⊤

ScXS

n

∥∥∥
max

≥ cmin

2sδPW (X)
> 1.

When t→ ∞, the conditions will be naturally satisfied.
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4.7 Sharper bounds for Lasso (Wainwright 7.15)

Solution 27. (a) By exercise 7.9

L1(s) = {∥∆∥2 ≤ 1, ∥∆∥1 ≤
√
s} ⊂ 2 conv{∥∆∥2 ≤ 1, ∥∆∥0 ≤ s} = 2 convL0(s).

Thus,

sup
∆∈L1(s)

∣∣∣∣〈∆, 1nX⊤w

〉∣∣∣∣ ≤ 2 sup
∆∈convL0(s)

∣∣∣∣〈∆, 1nX⊤w

〉∣∣∣∣ = 2 sup
∆∈L0(s)

∣∣∣∣〈∆, 1nX⊤w

〉∣∣∣∣ := Z ′.

Next, we prove that, w.p. ≥ 1− c2e
−c3nδ

2

,

Z ′

Cσ
≤ c1

√
s log(ed/s)

n
+ δ.

Proof. Let f(w) = sup∆⟨∆, 1
nX

⊤w⟩ and Z ′ = f(w). Notice that

f(w1)− f(w2) ≤
1

n
∥X∥op∥w1 − w2∥2 ≤ C√

n
∥w1 − w2∥2.

Hence, f is C√
n
-Lipschitz and by concentration we have

P(Z ′ − E[Z ′]) ≤ exp

(
− nδ2

2C2

)
.

Then, we bound the expectation.

E[Z ′] ≤ E

[
sup

|S|≤s,∥∆∥2=1

2

n
∥X⊤

S w∥2

]
.

Using chaining method and ∥X⊤
S w∥2 is C

√
n-Lipschitz, we have

E[∥X⊤
S w∥2] ≤ E[ sup

θ∈Ss−1

⟨θ,X⊤
s w⟩] ≤ inf

ϵ
ϵE[∥X⊤

S w∥2] + Cσ
√
n

∫ √
2

0

√
s log(1 +

2

u
) du.

=⇒ sup
|S|≤s

E[∥X⊤
S w∥2] ≤ Cσ

√
n
√
s ≲ Cσ

√
n

√
s log

ed

s
.

Combine them together, we have

E[Z ′] ≲ Cσ

√
s log(ed/s)

n
.

Combine the concentration inequality and we prove the result.

(b) By the LASSO condition, we have

κ∥∆∥22 ≤ 1

n
∥X∆∥22 ≤ 2w⊤X∆

n
,

where ∆ = θ̂ − θ∗. We have

κ∥∆∥2 ≤ 2

〈
∆

∥∆∥2
,
1

n
X⊤w

〉
.
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Notice that ∥∆∥1 ≤ 2∥θ̂S − θ∗S∥1 ≤ 2
√
s, we have

κ∥∆∥2 ≤ 2 sup
∆∈L1(2s)

∣∣∣∣〈∆, 1nX⊤w

〉∣∣∣∣ ≤ 2Cσ

√
2s log(ed/2s)

n
,

=⇒ ∥∆∥2 ≲
Cσ

κ

√
s log(ed/s)

n
.

w.p. ≥ 1− c′2e
−c′3nδ

2

.
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5 Homework 5

5.1 Restricted isometry property (RIP) implies restricted eigen- value
(RE) (Wainwright 7.10)

Solution 28. (a) Again, we use the result of Exercise 7.9.

L1(s) = {∥∆∥2 ≤ 1, ∥∆∥1 ≤
√
s} ⊂ 2 conv{∥∆∥2 ≤ 1, ∥∆∥0 ≤ s} = 2 convL0(s).

Thus, if ∥θ∥1 ≤
√
s∥θ∥2, θ̃ = θ

∥θ∥2
∈ 2 conv(L0(s)). Let θ̃ =

∑
i αiθi(∑

i

αiθi

)⊤

Γ

(∑
i

αiθi

)
=
∑
i

α2
i θ

⊤
i Γθi +

∑
i,j

αijθ
⊤
i Γθj .

By condition ∣∣θ⊤i Γθi∣∣ ≤ 4δ.

4
∣∣θ⊤i Γθj∣∣ ≤ (θi + θj)

⊤Γ(θi + θj)− (θi − θj)
⊤Γ(θi − θj) ≤ 32δ =⇒

∣∣θ⊤i Γθj∣∣ ≤ 8δ.

Combine them together, we have(∑
i

αiθi

)⊤

Γ

(∑
i

αiθi

)
≤ 4δ

∑
i

α2
i + 16δ

∑
i<j

αiαj ≤ 8δ.

And by rescaling, ∣∣θ⊤Γθ∣∣ ≤ 8δ∥θ∥22.
Otherwise,

∥θ∥1 >
√
s∥θ∥2.

Consider θ̃ = θ
∥θ∥1/

√
s
, we have ∥θ̃∥2 ≤ 1 and ∥θ̃∥1 ≤

√
s. Then similarly to the above proof, we can

prove result in this case.
In conclusion, we have ∣∣θ⊤Γθ∣∣ ≤ {8δ∥θ∥22 , ∥θ∥1 ≤

√
s∥θ∥2;

8δ
s ∥θ∥

2
1 , ∥θ∥1 >

√
s∥θ∥2.

(b) Let X satisfy RIP(2s), then for any d× 2s submatrix X2s,

(1− δ2s)∥∆∥22 ≤ 1

d
∥X2s∆∥22 ≤ (1 + δ2s)∥∆∥22.

=⇒
∣∣∣∣〈θ,(1

d
X⊤X − Id

)
θ

〉∣∣∣∣ ≤ δ2s, for all θ ∈ L0(2s).

Then, we prove the result for all θ ∈ Cα(S), |S| ≤ s. By part (a), if we have

∥θ∥1 ≤
√
s∥θ∥2.

Then ∣∣∣∣〈θ,(1

d
X⊤X − Id

)
θ

〉∣∣∣∣ ≤ 12δ2s∥θ∥22,

and κ = 1− 12δ2s. Otherwise∣∣∣∣〈θ,(1

d
X⊤X − Id

)
θ

〉∣∣∣∣ ≤ 12
δ2s(1 + α)2

s
∥θ∥21 ≤ 12δ2s(1 + α)2∥θ∥22,

and κ = 1− 12δ2s(1 + α)2.
(c) Hard Problem.
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5.2 Random matrices satisfy RIP (Exercise in Lecture 18)

Solution 29. We only need to prove w.p. ≥ 1− δ∥∥∥∥X⊤
S XS

n
− I2s

∥∥∥∥
op

≤ ϵ for any |S| = 2s.

We use covering number to prove the result.∥∥∥∥X⊤
S XS

n
− I2s

∥∥∥∥
op

= sup
∥u∥2=1

〈
u,

(
X⊤

S XS

n
− I2s

)
u

〉
= sup

∥u∥2=1

1

n

n∑
i=1

(x⊤i u)
2 − 1.

Using ϵ−net N to cover S2s−1, A =
X⊤

S XS

n − I2s,

∥A∥op = ⟨Ax, x⟩ ≤ ⟨Ax0, x0⟩+ ⟨Ax0, x− x0⟩+ ⟨A(x− x0), x⟩ ≤ sup
x0∈N

⟨Ax0, x0⟩+ 2ϵ∥A∥op.

Choose ϵ = 1
4 and we get ∥∥∥∥X⊤

S XS

n
− I2s

∥∥∥∥
op

≤ 2 sup
u∈N

1

n

n∑
i=1

(x⊤i u)
2 − 1.

Notice that the covering number can be bounded

|N | ≤
(
2

ϵ
+ 1

)2s

= 92s.

Fix u, x⊤i u ∼ N (0, 1). By Hoeffding’s inequality,

P

(
1

n

n∑
i=1

(x⊤i u)
2 − 1 ≥ ϵ/2

)
≤ exp

(
−nϵ

2

8

)
.

By union bound, we get

P

(
sup
u∈N

1

n

n∑
i=1

(x⊤i u)
2 − 1 ≥ ϵ/2

)
≤ 92s exp

(
−nϵ

2

8

)
,

hence

P

(∥∥∥∥X⊤
S XS

n
− I2s

∥∥∥∥
op

≥ ϵ

)
≤ 92s exp

(
−nϵ

2

8

)
.

By union bound, we get

P

(∥∥∥∥X⊤
S XS

n
− I2s

∥∥∥∥
op

≥ ϵ for any |S| = 2s

)
≤
(
d

2s

)
92s exp

(
−nϵ

2

8

)
≤
(
9ed

2s

)2s

exp

(
−nϵ

2

8

)
:= δ.

Hence

n ≥ 8
log(1/δ) + 2s log(9ed/2s)

ϵ2
≳

log(1/δ) + s log(ed/s)

ϵ2
.
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5.3 Analysis of square-root Lasso (Wainwright 7.17)

Solution 30. Consider 4 problems

arg min
θ∈Rd

{
1

2n
∥y −Xθ∥22 + λn∥θ∥1

}
. (3)

arg min
θ∈Rd

{
1√
n
∥y −Xθ∥2 + γn∥θ∥1

}
. (4)

arg min
θ∈Rd

{
1

2n
∥y −Xθ∥22

}
, s.t.∥θ∥1 ≤ R1. (5)

arg min
θ∈Rd

{
1√
n
∥y −Xθ∥2

}
, s.t.∥θ∥1 ≤ R2. (6)

In the lecture, we proved the 3 and 5 are equivalent. For the same reason 4 and 6 are equivalent.
Obviously, 5 and 6 are equivalent. Thus 3 and 4 are equivalent.

(b) Take the derivative of the objective function, we have

0 =
∂

∂θ

{
1√
n
∥y −Xθ∥2 + γn∥θ∥1

}
=

1
nX

T (Xθ̂ − y)
1√
n
∥y −Xθ̂∥2

+ γnẑ.

(c) By definition,

1√
n
∥y −Xθ̂∥2 + γn∥θ̂∥1 ≤ 1√

n
∥y −Xθ∗∥2 + γn∥θ∗∥1

=⇒ 1√
n
∥w −X∆̂∥2 −

1√
n
∥w∥2 ≤ γn∥θ∗∥1 − γn∥θ̂∥1

=⇒
(

1√
n
∥w −X∆̂∥2 − γn∥θ∗∥1 + γn∥θ̂∥1

)2

≤ 1

n
∥w∥22

=⇒ 1

n
∥X∆̂∥22 − 2

〈
∆̂,

1

n
X⊤w

〉
+ γ2n(∥θ̂∥1 − ∥θ∗∥1)2 − 2γn

∥y −Xθ̂∥2√
n

(∥θ̂∥1 − ∥θ∗∥1) ≤ 0.

Notice ∥θ̂∥1 − ∥θ∗∥1 ≤ ∥∆̂S∥1 − ∥∆̂Sc∥1, we have

1

n
∥X∆̂∥22 ≤ 2

〈
∆̂,

1

n
X⊤w

〉
+ 2γn

∥y −Xθ̂∥2√
n

(∥∆̂S∥1 − ∥∆̂Sc∥1).

That’s not enough, we need to improve the result using (b).

1

n
∥X∆̂∥22 =

1

n

(
θ̂ − θ∗

)⊤
X⊤X

(
θ̂ − θ∗

)
=

1

n
∆̂
(
X⊤Xθ̂ −X⊤y

)
+

1

n
∆̂
(
X⊤y −X⊤Xθ∗

)
=

1

n
⟨∆̂, X⊤w⟩ − γn√

n
∥y −Xθ∥2⟨∆̂, ẑ⟩.

The last line comes from (b). To bound ⟨∆̂, ẑ⟩, we have

⟨∆̂,−ẑ⟩ = ⟨∆̂S ,−ẑS⟩ − ⟨∆̂Sc , ẑSc⟩ ≤ ∥∆̂S∥1 − ∥∆̂Sc∥1.

Combine them together, we prove the result.
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(d) By (c)

0 ≤ 1

n
∥X∆̂∥22 ≤ 2

〈
∆̂,

1

n
X⊤w

〉
+ 2γn

∥y −Xθ̂∥2√
n

(∥∆̂S∥1 − ∥∆̂Sc∥1)

≤ 2
1

n
∥∆̂∥1∥X⊤w∥∞ + 2γn

∥y −Xθ̂∥2√
n

(∥∆̂S∥1 − ∥∆̂Sc∥1).

If ∥∆̂Sc∥1 ≤ ∥∆S∥1, then the result holds. Otherwise,

2
∥X⊤w∥∞∥y −Xθ̂∥2

n∥w∥2
(∥∆̂Sc∥1 − ∥∆̂S∥1) ≤ γn

∥y −Xθ̂∥2√
n

(∥∆̂Sc∥1 − ∥∆̂S∥1) ≤
1

n
∥∆̂∥1∥X⊤w∥∞

We can choose
R2 = ∥θ∗∥1,

n problem 6 and ∥y−Xθ̂∥2 ≥ ∥y−Xθ∗∥2 = ∥w∥2. (We still need to verify that this choice of R2 is
valid by some optimization theory.)

=⇒ 2(∥∆̂Sc∥1 − ∥∆̂S∥1) ≤ ∥∆̂∥1 = (∥∆̂Sc∥1 + ∥∆̂S∥1),

which derives the result.
(e) By RE condition, we have

1

n
∥X∆̂||22 ≥ κ∥∆̂∥22.

By the inequality in (d), we have

κ∥∆∥22 ≤ 1

n
∥X∆̂∥22 ≲

γn√
n
∥w∥2

(
3∥∆̂S∥1 − ∥∆̂Sc∥1

)
≲

γn√
n
∥w∥2

√
s∥∆̂∥2.

Thus, we have

∥∆̂∥2 ≲
∥w∥2√
n
γn

√
s.

37



5.4 Unitarily invariant matrix norms (Wainwright 8.2)

Solution 31. (a) (i), (ii) and (iii) are unitarily invariant.
Asσ(VMM⊤V ⊤) = σ(MM⊤), the singular values are invariant under orthogonal transform.

∥M∥2F =
∑
i

σ2
i .

∥M∥nuc =
∑
i

|σi|.

∥M∥op = sup
i
σi.

Hence (i)-(iii) are unitarily invariant.
However, for (iv), we can choose M = diag{1, 0 · · · , 0} and V (1) = 1√

d
(1, · · · , 1). Then

∥VMU∥∞ = 1√
d
= ∥M∥∞.

(b) To prove it is a matrix norm, we need to check the four conditions. As ρ is a norm on Rd1 ,
we have

∥M∥ρ ≥ 0.

∥M∥ρ = 0 if and only if σi(M) = 0 ⇐⇒M = 0.

∥αM∥ρ = ρ(ασ1(M), · · · , ασd1
(M)) = |α|ρ(σ1(M), · · · , σd1

(M)) = |α|∥M∥ρ.

At last, we will prove the triangle inequality.

∥M +N∥ρ = ρ(σ1(M +N), · · · , σd1(M +N))

First, we define

x ≺w y ⇐⇒
k∑

i=1

xi ≤
k∑

i=1

yi.

By Ky Fan’s inequality,
σ(M +N) ≺ σ(M) + σ(N).

Proof.
k∑

i=1

σi(M) = max
rank(U)=k

tr(MU)

max
rank(U)=k

tr((M +N)U) ≤ max
rank(U)=k

tr(MU) + max
rank(U)=k

tr(NU).

We only need to prove
ρ(x) ≤ ρ(y) as x ≺w y.(Hard)

(c) We have σ(VMU) = σ(M), as ρ is invariant to permutations and sign changes, ∥ · ∥ρ are
unitarily invariant.
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5.5 PCA for Gaussian mixture models (Wainwright 8.6)

Solution 32. (a) Our model is
xi = ϵiθ

∗ + σwi,

where ϵi ∈ Unif{±1} and wi ∈ N(0, Id).
First, we restate the PCA model. The empirical covariance matrix is

Σ̂ =
1

n

1

σ2

n∑
i=1

xix
⊤
i ,

and
θ̂ = arg max

∥θ∥2=1
θ⊤Σ̂θ.

Compared to the textbook theorem v = 1
σ2 and we have

∥θ̂ − θ∥2 ≲

√
v + 1

v2

√
d

n
≲ σ

√
1 + σ2

√
d

n
w.h.p.

(b) The classification rule is

ψ(x) =

{
1 , if ∥x− θ̂∥ ≤ ∥x+ θ̂∥.
−1 , if ∥x− θ̂∥ > ∥x+ θ̂∥.

(c) We can rescale the model by Σ− 1
2 :

x̂i = Σ− 1
2xi = ϵiΣ

− 1
2 θ∗ +Σ− 1

2wi.

Similarly, we use the largest eigenvalue of empirical covariance matrix:

θ̂ = arg max
∥θ∥2=1

θ⊤
(
1

n
x̂ix̂

⊤
i

)
θ.

But now, our estimator doesn’t work because as n→ ∞,

θ̂ → Σ− 1
2 θ∗

∥Σ− 1
2 θ∗∥2

̸= θ∗.
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5.6 PCA for retrieval from absolute values (Wainwright 8.7)

Solution 33. By definition,

(
E[y2i xix⊤i ]

)
kl

=
∑
ij

θ∗i θ
∗
jxixjxkxl =

{
2θ∗kθ

∗
l , if k ̸= l.

2θ∗k
2 , if k = l.

And thus,
E[y2i xix⊤i ] = 2θ∗⊤θ∗ + Id.

Obviously,
λmax(2θ

∗⊤θ∗ + Id) = 3.

Then we can construct our PCA estimator

θ̂ = arg max
∥θ∥2=1

θ⊤
(
1

n
y2i xix

⊤
i

)
θ.
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5.7 Lower bounds on the critical inequality (Wainwright 13.5)

Solution 34. (a) By critical inequality,

G (δ,F ) = Ew

[
sup

∥g∥≤δ,g∈F

1

n

n∑
i=1

wigi

]
≤ δE∥w∥2 ≤ δ =

δ2

2σ
,

as δ2 = 4σ2.
(b) By the lower bound of G (δ,F ).

δ2

2σ
≥ G (δ,F ) ≥ δ√

n

√
2

π
.

Thus, we get

δ2 ≥ 8

π

σ2

n
.

As δ ∈ (0, 1], we have

δ2 ≥ min

{
1,

8

π

σ2

n

}
.
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6 Homework 6

6.1 Local Gaussian complexity and adaptivity (Wainwright 13.6)

Solution 35. (a) By definition, we have

G (Fl1(1), δ) = E

[
sup

θ∈Fl1
(1),∥f∥n≤δ

n∑
i=1

wiθi

]
≤ E

[
sup

θ∈Fl1
(1)

n∑
i=1

wiθi

]
,

where wi ∈ N (0, 1
n ). By contraction inequality,

E

[
sup

θ∈Fl1
(1)

1

n

n∑
i=1

wiθi

]
≲

1

n
E
[
sup

1≤i≤n
wi

]
By maximal inequality,

E
[
sup

1≤i≤n
w̃i

]
≲
√

log n.

Combine them together, we get

G (Fl1(1), δ) ≤ c1

√
log n

n
.

By the definition of θ̂,

1

n

n∑
i=1

(yi − fθ̂(ei))
2 ≤ 1

n

n∑
i=1

(yi − fθ∗(ei))
2

=⇒
n∑

i=1

(
θ̂i − θ∗i +

σ√
n
wi

)2

≤
n∑

i=1

(
σ√
n
wi

)2

=⇒
∥∥∥θ̂ − θ∗

∥∥∥2
2
≤ 2

σ√
n

n∑
i=1

(
θ̂i − θ∗i

)
wi ≤ 2

√
nσG (Fl1(1), δ)∥θ̂ − θ∗∥1 ≤ c′1σ

√
log n

n
.

The last line follows from ∥θ̂ − θ∗∥1 ≤ ∥θ̂∥1 + ∥θ∗∥1 ≤ 2.
(b) WLOG, assume θ∗ = e1. We have

1 ≥ ∥v + e1∥1 ≥ 1− |v1|+
∑
j≥2

|vj |

=⇒ ∥v∥1 ≤ 2|v1| ≤ 2δ
√
n.

Then we write the critical equality

Gn(δ,F ∗)

δ
≤ δ

2σ/
√
n
.

Now we analyze the Empirical Gaussian process.

Gn(δ,F
∗) ≤

√
log n

n
sup

∥θ∥1≤1,∥θ−θ∗∥1≤δ
√
n

∥θ − θ∗∥1 ≤
√
log n

n
sup

∥v+e1∥≤1,∥v∥1≤δ
√
n

∥v∥1 ≤ 2δ

√
log n√
n

.

Solve the critical equality and we can choose

δn ≍ σ

√
log n

n
.
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We have

∥θ̂ − θ∗∥2n ≲ δ2n ≍ σ2 log n

n2

=⇒ ∥θ̂ − θ∗∥22 = n∥θ̂ − θ∗∥2n ≤ c′2σ
2 log n

n
.

Remark 6.1. I use the definition

G (F , δ) =
1

n
E

[
sup
f∈F

n∑
i=1

wif(xi)

]
,

which is consistent with the textbook. The result may be a little different.
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6.2 Rates for twice-differentiable functions (Wainwright 13.8)

Solution 36. We apply Corollary 13.7 of the textbook

16√
n

∫ δ

δ2/4σ

√
logNn(t, Bn(δ,FC − FC) ≤

δ2

4σ
.

As FC − FC ⊂ F2C . By the result of Example 5.11 and let α = γ = 1, we get

logNn(t, Bn(δ,FC − FC) ≲

(
1

t

) 1
2

.

Thus, we combine the results and identify that

1√
n
δ

3
4 ≲ δ2 =⇒ δ2 ≍

(
σ2

n

) 4
5

.

And by Example 13.11 of the textbook, we get

P

(
∥f̂ − f∗∥2n ≥ c0

(
σ2

n

)4/5
)

≤ c1e
−c2(n/σ

2)1/5 .
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6.3 Rates for additive nonparametric models (Wainwright 13.9)

Solution 37. (a) We have

σ

n

∣∣∣∣∣
n∑

i=1

wi∆̂(Xi)

∣∣∣∣∣ ≤ σ

n

d∑
j=1

∣∣∣∣∣
n∑

i=1

wi∆̂j(Xij)

∣∣∣∣∣ .
For fixed j, when t > δn,j, ∥∆̂j∥n ≥

√
tδn,j. Then, w.h.p, we have

σ

n

∣∣∣∣∣
n∑

i=1

wi∆̂j(Xij)

∣∣∣∣∣ ≤√tδn,j∥∆̂j∥n,

by Lemma 13.12 in the textbook. And when ∥∆̂j∥n ≤
√
tδn,j,

σ

n

∣∣∣∣∣
n∑

i=1

wi∆̂j(Xij)

∣∣∣∣∣ ≤ sup
∥gj∥n≤

√
tδn,j

σ

n

∣∣∣∣∣
n∑

i=1

wigj(Xij)

∣∣∣∣∣ .
Then we consider the union probability,

P

(
σ

n

∣∣∣∣∣
n∑

i=1

wj∆̂j(Xij)

∣∣∣∣∣ ≥ tδij +
√
tδij∥∆̂j∥n

)
(7)

≤P

(
σ

n

∣∣∣∣∣
n∑

i=1

wj∆̂j(Xij)

∣∣∣∣∣ ≥ tδij , ∆̂j(Xij) ≥
√
tδn,j

)
︸ ︷︷ ︸

I

(8)

+P

(
σ

n

∣∣∣∣∣
n∑

i=1

wj∆̂j(Xij)

∣∣∣∣∣ ≥√tδij∥∆̂j∥, ∆̂j(Xij) ≤
√
tδn,j

)
︸ ︷︷ ︸

II

. (9)

By Lemma 13.12, we have

I ≤ exp

(
−ntδn,j

2σ2

)
.

To bound the II, we prove is a sub-Gaussian first. As∣∣∣∣∣∣ sup
∥g∥n≤

√
tδn,j

σ

n

∣∣∣∣∣
n∑

i=1

wigj(Xij)

∣∣∣∣∣− sup
∥g∥n≤

√
tδn,j

σ

n

∣∣∣∣∣
n∑

i=1

w′
igj(Xij)

∣∣∣∣∣
∣∣∣∣∣∣ ≤ σ√

n

√
tδn,j∥w − w′∥2,

we have sup∥gj∥n≤
√

tδn,j

σ
n |wjgj(Xij)| is σ√

n

√
tδn,j−Lipschitz. Thus, sup∥gj∥n≤

√
tδn,j

σ
n |wjgj(Xij)| ∼

sG( σ√
n

√
tδn,j). Notice that G (δn,j) ≤ δ2n,j ≤ tδn,j.

=⇒ I ≤ P

 sup
∥gj∥n≤

√
tδn,j

σ

n
|wjgj(Xij)| ≥ 2tδn,j


≤ exp

(
−

4t2δ2n,j

( σ√
n

√
tδn,j)2

)
= exp(−cntδn,j).
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Combine them together we prove the inequality 7. Consider union bound over d dimension, we get

P

σ
n

d∑
j=1

∣∣∣∣∣
n∑

i=1

wj∆̂j(Xij)

∣∣∣∣∣ ≥ dtδn,max + 2
√
tδn,max

 d∑
j=1

∥∆̂j∥n

 ≤ c1de
−c2ntδn,max .

(b) First, by Cauchy-Schwarz inequality, we have

d∑
j=1

∥∆̂j∥n ≤
√
d

√√√√ d∑
j=1

∥∆̂j∥2n ≤
√
d
√
K∥∆̂∥n.

Notice that

∆̂ = f̂ − f∗ =

d∑
j=1

ĝj −
d∑

j=1

g∗j .

By basic inequality,

∥∆̂∥2n ≤ dtδn,max +
√
tδn,max

√
dK∥∆̂∥n ≤ dtδn,max + tδn,maxdK +

∥∆̂∥2n
4

=⇒ ∥∆̂∥2n ≤ c3Kdtδn,max = c3Kdδ
2
n,max.

The last equal sign follows by choosing t = δn,max.
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6.4 Properties of Kullback-Leibler divergence (Wainwright 15.3)

Solution 38. (a) By Jensen’s inequality and log x is a concave function of x.

−D(P ||Q) = −
∫
P (x) log

P (x)

Q(x)
dx =

∫
P (x) log

Q(x)

P (x)
dx ≤ log

∫
P (x)

Q(x)

P (x)
dx = log 1 = 0.

Thus D(P ||Q) ≥ 0 and the equality holds if and only if P (x) = Q(x) a.s., which means p(x) = q(x)
a.s..

(b) As D(P ||Q) = D(Q||P ), we only need to prove the first equation.

D(

m∑
j=1

λjPj ||Q) =

∫ m∑
j=1

λjPj(x) log

∑m
j=1 λjPj(x)

Q(x)
dx

We only need to prove that

∫ m∑
j=1

λjPj(x) log

 m∑
j=1

λjPj(x)

 dx ≤
m∑
j=1

λj

∫
Pj(x) logPj(x) dx,

which follows the Jensen’s inequality and that x log x is a convex function of x.
(c) Notice that

log
dP1 ⊗ P2

dQ1 ⊗Q2
= log

P1

Q1
+ log

P2

Q2
.

Thus we have

D(P1⊗P2||Q1⊗Q2) = EP1⊗P2

[
log

dP1 ⊗ P2

dQ1 ⊗Q2

]
= EP1

[
log

P1

Q1

]
+EP2

[
log

P2

Q2

]
= D(P1||Q1)+D(P2||Q2).

By mathematical induction, we get the result immediately.
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6.5 Bounds on the TV distance (Wainwright 15.10)

Solution 39. (a) By definition,

∥P −Q∥TV =
1

2

∫
|p(x)− q(x)|ν(dx).

So, we only need to check (∫
|p(x)− q(x)|ν(dx)

)2

≤
∫
p(x)2

q(x)
ν(dx)− 1.

By Cauchy-Schwarz inequality, we have(∫
|p(x)− q(x)|ν(dx)

)2

≤
[∫

(p(x)− q(x))2

q(x)
ν(dx)

] [∫
q(x)ν(dx)

]
=

∫
p(x)2

q(x)
ν(dx)− 1.

(b) We have

p(x) =
1√
2πσ2

exp

(
− (x− θ)2

2σ2

)
and q(x) =

1√
2πσ2

exp

(
− x2

2σ2

)
.

Denote pn(x) = p(x)⊗n and qn(x) = q(x)⊗n We have∫
pn(x)

2

qn(x)
ν(dx) =

(∫
1√
2πσ2

exp

(
− x2

2σ2
+

2θx

σ2
− θ2

σ2

)
dx

)n

= e

(√
nθ
σ

)2

,

which leads to the result.
(c) We have

p(x) =
1

2

1√
2πσ2

exp

(
− (x− θ)2

2σ2

)
+

1

2

1√
2πσ2

exp

(
− (x+ θ)2

2σ2

)
, q(x) =

1√
2πσ2

exp

(
− x2

2σ2

)
.

Denote pn(x) = p(x)⊗n and qn(x) = q(x)⊗n We have∫
pn(x)

2

qn(x)
ν(dx) =

(
1

4
A+

1

2
B +

1

4
C

)n

.

where

A =

∫
1√
2πσ2

exp

(
− x2

2σ2
+

2θx

σ2
− θ2

σ2

)
dx = e(

θ
σ )

2

,

B =

∫
1√
2πσ2

exp

(
− x2

2σ2
− θ2

σ2

)
dx = e−(

θ
σ )

2

,

C =

∫
1√
2πσ2

exp

(
− x2

2σ2
− 2θx

σ2
− θ2

σ2

)
dx = e(

θ
σ )

2

.

Combine them together, we get the result,(
1

4
A+

1

2
B +

1

4
C

)n

≤ e

(√
nθ
σ

)2

.
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6.6 KL divergence for multivariate Gaussian (Wainwright 15.13)

Solution 40. (a) We prove (b) first, and (a) directly follows from (b).
(b) We have

Eq1

[
log

(
q1
q2

)]
= Eq1

[
1

2
log

(
det(Σ2)

det(Σ1)

)
+

1

2
(x− µ2)

⊤Σ−1
2 (x− µ2)−

1

2
(x− µ1)

⊤Σ−1
1 (x− µ1)

]
=

1

2
log

(
det(Σ2)

det(Σ1)

)
+

1

2
⟨µ1 − µ2,Σ

−1
2 (µ1 − µ2)⟩+

1

2
Eq1 tr(Σ

−1
2 xx⊤)− 1

2
Eq1 tr(Σ

−1
1 xx⊤)

=
1

2

{
⟨µ1 − µ2,Σ

−1
2 (µ1 − µ2)⟩+ log

(
det(Σ2)

det(Σ1)

)
+ tr(Σ−1

2 Σ1)− d

}
.
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6.7 Sharper bounds for Gaussian location family (Wainwright 15.8)

Solution 41. Denote the minimax lower bound as M .
(a) Use Le Cam’s two point method and Pinsker inequality, we have

M ≥ δ2

2
(1− ∥Pn

2δ − Pn
0 ∥TV) ≥

δ2

2

(
1−

√
1

2
D(Pn

2δ||Pn
0 )

)
=
δ2

2

(
1− 2nδ2

σ2

)
=

σ2

16n
,

where we choose δ2 = σ2

4n .
(b) Use Le Cam’s two point method and Le Cam’s inequality, we have

M ≥ δ2

2
(1− ∥Pn

2δ − Pn
0 ∥TV) ≥

δ2

2

(
1−H(Pn

2δ||Pn
0 )

√
1−

H2(Pn
2δ||Pn

0 )

4

)
.

First, we calculate the squared Hellinger distance

H2(P2δ||P0) = 2− 2 exp

(
− δ2

2σ2

)
.

Thus, we have

H2(Pn
2δ||Pn

0 ) ≤ n

(
2− 2 exp

(
− δ2

2σ2

))
≤ nδ2

σ2
.

As a result, we can choose δ2 = σ2

4n and get

M ≥ δ2

8n

(
1−

√
15

8

)
.

(c) Use Le Cam’s two point method and Problem 6.5, we can choose δ2 = σ2

4n and get

M ≥ δ2

2
(1− ∥Pn

2δ − Pn
0 ∥TV) ≥

δ2

2

(
1− 1

2

√
e

4nδ2

σ2 − 1

)
=
σ2

8n

(
1− 1

2

√
e− 1

)
.
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6.8 Lower bounds for generalized linear models (Wainwright 15.17)

Solution 42. (a) By tensorization properties of KL divergence

D(Pθ||Pθ′) =

n∑
i=1

∫
Pθ(yi) log

(
Pθ(yi)

Pθ′(yi)

)

=

n∑
i=1

∫
Pθ(yi)

1

s(σ)
(yi(⟨xi, θ − θ′⟩ − Φ(xi, θ) + Φ(xi, θ

′)))

=

n∑
i=1

1

s(σ)
Eθ[Yi] (yi(⟨xi, θ − θ′⟩ − Φ(xi, θ) + Φ(xi, θ

′))) .

By taking derivatives on both sides

1 =

∫
Pθ(y)

=⇒ 0 =
d

d⟨x, θ⟩
Pθ(y) = Eθ[Y ]− Φ′(⟨x, θ⟩).

Thus substitute the result into the calculation of the KL divergence, we have

D(Pθ||Pθ′) =
1

s(σ)

n∑
i=1

Φ′(⟨x, θ⟩) (yi(⟨xi, θ − θ′⟩ − Φ(xi, θ) + Φ(xi, θ
′)))

(b) By Taylor’s expansion, we have

Φ(⟨x, θ′⟩) = Φ(⟨x, θ⟩) + Φ′(⟨x, θ⟩) (⟨x, θ′⟩ − ⟨x, θ⟩) + Φ′′(ξ)

2
(⟨x, θ′⟩ − ⟨x, θ⟩)2 .

Thus, the KL-divergence can be bounded by

D(Pθ||Pθ′) =
1

s(σ)

n∑
i=1

Φ′(⟨x, θ⟩) (yi(⟨xi, θ − θ′⟩ − Φ(xi, θ) + Φ(xi, θ
′)))

≤ 1

s(σ)

L

2
σmax(X)∥θ′ − θ∥22.

(c) By Fano’s method, we have

inf
θ̂

sup
θ∈Bd

2(1)

E
[
∥θ̂ − θ∥22

]
≥ δ2

(
1− maxθ,θ′∈M D(Pθ||Pθ′) + log 2

logM

)
,

where M is a 2δ packing. Notice Θ = {θ ∈ Rd : ∥θ∥2 ≤ 1}, thus choose the net with covering number

|M | =
(
1 +

1

2δ

)d

=⇒ log |M | ≥ d log

(
1 +

1

2δ

)
By part (b), we have

D(Pθ||Pθ′) ≤ 1

s(σ)

L

2
σ2
max(X)∥θ − θ′∥22 =

1

s(σ)

L

2
η2max︸ ︷︷ ︸

c

n∥θ − θ′∥22 ≤ cn · 16δ2

Combine them together and we get

inf
θ̂

sup
θ∈Bd

2(1)

E
[
∥θ̂ − θ∥22

]
≥ δ2

(
1− cn · 16δ2 + log 2

d log(1 + 1
2δ )

)
.
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Case 1 If cn ≤ 100d, then choose δ2 = c0, where c0 is some constant number. Thus we have

inf
θ̂

sup
θ∈Bd

2(1)

E
[
∥θ̂ − θ∥22

]
≥ 1

Case 2 If cn > 100d, then choose δ2 = d
cn . Thus we have

inf
θ̂

sup
θ∈Bd

2(1)

E
[
∥θ̂ − θ∥22

]
≥ c · s(σ)

Lη2max

· d
n
.

Thus, we have

inf
θ̂

sup
θ∈Bd

2(1)

E
[
∥θ̂ − θ∥22

]
≥ min

{
1, c · s(σ)

Lη2max

· d
n

}
.

(d) Choose yi = ⟨xi, θ⟩+ σwi where wi ∼ N (0, 1). We have

Pθ(yi) =
1√
2π
e−

y2
i

2σ2 e
1
σ

(
yi⟨xi,θ⟩−

⟨xi,θ⟩
2

2

)
Φ(⟨xi,θ⟩)

.

Choose Φ(t) = t2

2 , whose second derivative is bounded, and we get a special case of part (c).

Remark 6.2. The upper bound and minimax lower bound of regression are both the order d
n .
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