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1 Jan 21st

1.1 Origins, historic motivations, and sample results

In this course, we will primarily focus on random matrices and their eigenvalues. To provide moti-
vation, we will begin by exploring the history of random matrix theory.

The history of random matrices can be divided into three significant waves. The first wave
occurred during the 1920s to 1930s, which in one side is related to the representation theory of Lie
groups. From group theory, any compact group can induce a canonical probability measure, which
is called Haar measure (formalization of uniform measure).

We can discuss a central example: consider the unitary group G = U (N), which consists of
N × N unitary matrices u. The eigenvalues of u, denoted as z1, . . . , zN , are N points on the unit
circle. This is because for uei = ziei, we have |zi|2ei = z∗i ziei = u∗uei = ei, and thus |zi|2 = 1.

Moreover, H. Weyl developed the following theorem, which describes the density of the N eigen-
values of a randomly sampled matrix from U (N).

Theorem 1.1. Let u be a uniformly random element of U (N). Then its eigenvalues are distributed
with density

ρ(z1, . . . , zN ) =
∏
i<j

|zj − zi|2.

In parallel, people derive random matrix from multi-dimensional stastics. Let X = [xij ] be
N×T matrix of real data and define sample covariance matrix asM = XX∗ (we callM in that way
because 1

TM is an estimator for the true covariance of N dim vector represented by one column).
The main results are from Hsu, who proved something more general:

Theorem 1.2. Suppose xij
iid∼ N (0, 1), T ≥ N . The density of N real eigenvalues of M is

ρ(λ1, . . . , λN ) =
∏
i<j

|λj − λi|
N∏
i=1

(
λ

T−N−1
2

i e−
λi
2

)
.

As a conclusion, the first era focuses on explicit N computations.
Next, we arrive at the 1950s, a period when the eigenvalues of large random matrices began

to serve as a universal model for various point processes. This work contributed to Eugene Wigner
receiving the Nobel Prize in Physics in 1963. The originates of this work are in quantum mechanics,
where observations are closely linked to the eigenvalues of operators. One basic idea here is to
approximate operators in infinite dimension spaces by large dimensional random matrices.

Consider the simplest matrix GOE (Gaussian Orthogonal Ensemble), which is defined as M =
1
2 (X +X∗) where X is N ×N with entries

iid∼ N (0, 1). We also consider GUE (Guassian Unitary
Ensemble) and GSE (Gaussian Symplectic Ensemble) in this course.

The main results of this era is Gaudin-Mehta Distribution, which involved spacing between two
neighboured eigenvalues λi − λi+1. The GM distribution is related in a very range region, including
neutron resonance spectroscopy, Dirichlet Boundary Value Problem, the imaginary part of Riemann
zeta function and even bus interval distribution!

In the last 20 years, although many proofs of universal approximation of GM distribution have
been provided, the underlying conceptual reasons remain not fully understood.

The third wave began in the last 25 years and continues to the present day, which focuses
on the largest and smallest eigenvalues. The main results of this wave include the Tracy-Widom
distributions, which have become widely recognized and influential.

Definition 1.3 (Tracy-Widom distribution). TW1 and TW2 are limits (after proper centering and
rescaling) for the laws of largest eigenvalues in GOE and GUE, respectively.
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They are also widespread in 1) random matrix theory and 2) combinatorial probability.
Consider an intuitive example, where we take a permutation of numbers: 1, 2, ..., n→ i1, i2, ..., in.

Denote l(σ) as the length of longest increasing subsequence, and we have the theorem

Theorem 1.4. Baik–Deift–Johansson theorem Let ln be the length of LIS in uniformly random
permutation of {1, 2, ..., n}, then

n−1/6(ln − 2
√
n)

d→ TW2.

Figure 1: Largest increasing subsequence

Another application is the KPZ universality class for interface growth models, which played a
role in the awarding of the 2021 Nobel Prize in Physics. Theoretical tools, such as replicas, are used
to demonstrate that the large-time fluctuations of growing interfaces converge to the Tracy-Widom
distribution TW2, which depends on geometry of the system.

Figure 2: KPZ growth model
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In recent years, with the advancement of artificial intelligence and machine learning, two notable
applications have emerged. The first one is ”Signal + Noise problem”, which is formulated as:

C = A+B,

where C is the observed matrix, A is a deterministic matrix which is always low rank and B is a
random matrix, e.g. GOE or GUE.

Figure 3: Background Subtraction from an Image

Determining what A is by examining C is a fundamental problem in sparse recovery, and the
largest eigenvalue of C plays a significant role in this process.

Another example involves solving a system of linear equations:

AX = Y,

where A is an N × T matrix, X is an unknown T × 1 vector and Y is a known N × 1 vector. An
important question is how sensitive is the solution to small perturbations of Y , which is related to
the condition number κ = σmax

σmin
.

Moreover, in these years large language model has developed a lot and they have many matrix
multiplications inside. A natural question is: can we analysis them using random matrices?

In this class, we will give an overview of main types of random matrix behaviors and some tools
to figure them out.

1.2 First computation: density of eigenvalues in classical ensembles of
random matrices (GOE, GUE, GSE, etc)

Let X be N ×N matrix with i.i.d. entries:
a)N (0, 1)

b)N (0, 1) + iN (0, 1)

c)N (0, 1) + iN (0, 1) + jN (0, 1) + kN (0, 1)
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Set M = 1
2 (X +X∗), and we have the main theorem in today’s lecture.

Theorem 1.5. Let the eigenvalues of M be λ1 ≥ λ2 ≥ ... ≥ λN , and they have density

1

Z

∏
i<j

|λj − λi|β ·
N∏
i=1

exp(−λ
2
i

2
) dλ1...dλN .

where β = 1, 2, 4 for a), b), c) and

Z =
(2π)N/2

N !

N∏
j=0

Γ(1 + (j + 1)β/2)

Γ(1 + β/2)

is the partition function (normalization factor).

Proof. We prove β = 1 here and leave β = 2 to the homework.
Step 1 Claim density of M = 1

2 (X +X∗) ∼ exp(− 1
2 tr(M

2)).
Indeed,

tr(M2) =
∑
i,j

m2
ij =

N∑
i=1

x2ii︸︷︷︸
N (0,1)

+
1

2

∑
i<j

(xij + xji)
2︸ ︷︷ ︸

N (0,2)

implies that the density of M ∝ exp(− 1
2 tr(M

2))

Step 2 We can calculate that exp(− 1
2 tr(M

2)) =
∏N

i=1 exp(−
λ2
i

2 ).
We derive it immediately by diagonalizing the the matrix M .
Step 3 Each symmetric matrix is determined by its eigenvalues and eigenvectors, i.e. there

exists an almost bijection π

π : WN︸︷︷︸
λ1<λ2<...<λN

× O(N)︸ ︷︷ ︸
Orthogonal Bases

→ HN︸︷︷︸
Symmetric Matrix

We say ”almost” because indeed the map is not injective: we can multiply the eigenvalue by ±1. In
other words, if the eigenvalues are unique, π−1(M) has exactly 2N elements.

Now we give the key proposition of the proof.

Proposition 1.6. Consider the map π : (Λ, O) 7→ B, where π((Λ, O)) = OΛO∗. Then the Jocobian
of the map is

∏
i<j |λj − λi|.

Remark 1.7. It is an important technique to transform an intractable density calculation into a
tractable one and a Jocobian.

Proof. It is sufficient to calculate by taking O = Id, as when we transform O to A · O (where
A is orthogonal), the uniform measure on O(N) and the Lebesgue measure on H (N) remain
unchanged.

Then we take O = exp(B) = Id+B+ ... and we can deduce that B+B∗ = 0 as OO∗ = Id. Then
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the map π can be written as

((λ1, ..., λN ), exp(B)) 7→ exp(B)


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

 exp(−B)

7→ (Id+B)


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

 (Id−B) + o(B)

7→


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn



+


0 b12(λ2 − λ1) b13(λ3 − λ1) · · · b1n(λn − λ1)

b21(λ1 − λ2) 0 b23(λ3 − λ2) · · · b2n(λn − λ2)
b31(λ1 − λ3) b32(λ2 − λ3) 0 · · · b3n(λn − λ3)

...
...

...
. . .

...
bn1(λ1 − λn) bn2(λ2 − λn) bn3(λ3 − λn) · · · 0

+ o(B)

As B has only n(n−1)
2 free parameter, so the Jacobian of the map is

∏
i<j |λj − λi|.

Step 4 We now calculate Z:

Z =

∫
RN

∏
i<j

|λj − λi|β ·
N∏
i=1

exp(−λ
2
i

2
) dλ1...dλN =

(2π)N/2

N !

N∏
j=0

Γ(1 + (j + 1)β/2)

Γ(1 + β/2)

Now we give some other ensembles. The first one is density of rectangular matrix.

Definition 1.8 (Laguerre or Wishart ensemble). Take N ×M matrix X with N < M and assume
it has singular value decomposition X = U diag{s1, ..., sN}V T

Theorem 1.9. Let X be N ×M with i.i.d. real/complex/quarternion Gaussian matrix elements,
then the density of λi = s2i

ρ(λ1, ..., λN ) ∝
∏
i<j

|λj − λi|β ·
N∏
i=1

exp(−λi
2
) · λ

β
2 (M−N+1)−1
i dλ1...dλN .

Remark 1.10. This density is also known as multivariate Γ distribution.

Another ensemble involves subspace projection. Imagine that we have two rectangular arrays
X : N × T and Y : K × T , where N ≤ K ≤ T . PX is a projection on N-dimensional subspace
in T-dimensional space spanned by N rows of X and PY is defined similarly. Squared canonical
correlations ci are N non-zero eigenvalues PXPY (c2i = cos2 θi).
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Theorem 1.11. Assume X and Y are independent with i.i.d. Gaussian real/complex/quarternion
elements. The eigenvalues of PXPY have density

ρ(λ1, ..., λN ) ∝
∏
i<j

|λj − λi|β ·
N∏
i=1

λ
β
2 (K−N+1)−1
i (1− λi)

β
2 (T−N−K+1)−1 dλ1...dλN ,

where we assume N ≤ K ≤ T and N +K ≤ T , 0 ≤ λi ≤ 1.

Remark 1.12. This density is also known as multivariate β distribution.

The general form of the eigenvalues in such ensembles is

∏
i<j

|λj − λi|β︸ ︷︷ ︸
logorithm pairwise interaction

N∏
i=1

V (λi)︸ ︷︷ ︸
potential

.

whose name comes from log-gas or β-ensemble.

8



2 Jan 28th

Happy Chinese New Year!

2.1 Law of Large Numbers through tridiagonal matrices

Today our goal is to prove the law of large numbers for any β > 0, which is known as the semi-circle
law. Our main tools are triangle matrix and moment method.

Theorem 2.1. Consider the real symmetric tridiagonal matrix

Tβ =


N (0, 1) 1√

2
χβ(n−1) · · · 0

1√
2
χβ(n−1) N (0, 1) · · · 0
...

...
. . .

...
0 0 · · · N (0, 1)


where the second diagonal entries are χβ(n−1), χβ(n−2), ...χβ. χk =

√
χ2
k =

√∑k
i=1 N (0, 1)2, whose

density is
1

2
k
2−1Γ(k2 )

xk−1e−
x2

2 .

Then the eigenvalues of Tβ have the same distribution of GβE.

Proof. We present for β = 1. By linear algebra, we can choose an orthogonal matrix U1, and
transform the matrix M to U1MU⊤

1 , whose the first row is

(x11,

√√√√ n∑
k=2

x2ik, 0, ..., 0).

Note that the eigenvalues do not change after the transformation.
We can inductively do the same operation on the rest sub-matrix.

Corollary 2.2. For β = 1, 2, 4, the law of eigenvalues ∼
∏

i<j(xi − xj)
β
∏N

i=1 exp(−
x2
i

2 ).

Theorem 2.3. In fact, the corollary is true for any β > 0.

Now we begin to prove the semi-circle law. First we give the key result of trace calculation.

Theorem 2.4. For each k > 0, β > 0, we have

1

N
k
2+1

tr(T k
β ) =

1

N
k
2+1

N∑
i=1

Xk
i

N→∞,in probability−−−−−−−−−−−−−→

{
0 , k is odd;

(β2 )
k Cat k

2
, k is even.

where Catk is the k-the catalan number defined as

Catk =
1

k + 1

(
2k

k

)
.

Proof. By SLLN, we have

lim
N→∞

χβ(N−1)√
2N

=

√
β

2
,

lim
N→∞

χβ(N−αN)√
2N

=

√
β(1− α)

2
.

9



So by the definition of the trace, we have

tr

(
Tβ√
N

)k

=

N∑
m=1

∑
k-step paths
from m to m

(
some

χβ(N−i)√
2N

)(
some

N (0, 1)√
N

)

=

N∑
m=1

(#k-step paths from m to m)

√
β

2

(
N −m

N

)k

+ o(N).

The second equation follows from that if there exists ”some N (0,1)√
N

”, the term vanishes. When 2 ∤ k,
#k-step paths from m to m is zero. When 2 | k, #k-step paths from m to m =

(
k
k
2

)
. Approximate

the summation by integration and we have

1

N
tr

(
Tβ√
N

)k

→
(
k
k
2

)(
β

2

) k
2
∫ 1

0

x
k
2 dx = Cat k

2

(
β

2

) k
2

Now we introduce the semi-circle distribution.

Definition 2.5 (Wiegner semi-circle distribution). The density of the distribution is

µ(x) =
1

2π

√
4− x2.

We use moment method to recover the proof and give the definition.

Theorem 2.6. Let mk are moments of Tβ and we have

mu =
{

1
u
2 +1

(
u
u
2

)
, u is even.

Theorem 2.7. mk are moments of semi-circle law and

mk =

∫ 2

−2

µ(x)xk dx.

Proof. (Method I) We just calculate

mk =

∫
1√
2π

√
4− x2xk dx.

Let x = 2 cos θ, and by inductive calculation, we derive the results.

However, we are not satisfied for the calculation is not so intuitive. We then introduce another
proof.

Proof. (Method II) Introduce generating function:

G(z) =

∞∑
k=0

mkz
−k−1,

m0 = 1. By classical results, we have

∞∑
n=0

Catn x
n =

1−
√
1− 4x

2x
=: C(x).
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Now we can derive the expression of G(z) using C(x).

G(z) =

∞∑
k=0

mkz
−k−1 =

∞∑
l=0

Catl z
−2l−1 =

z −
√
z2 − 4

2
.

Next we introduce two propositions.

Proposition 2.8.

G(z) =

∫
µ(x)

z − x
dx.

Proof. By Taylor expansion, we have∫
µ(x)

z − x
dx =

1

z

∫
µ(x)

1− x
z

dx

=
1

z

∫
µ(x)

∞∑
k=0

(x
z

)k
=

∞∑
k=0

mkz
−k−1

= G(z)

Proposition 2.9.

µ(x0) = − 1

π
lim

y0→0+
ℑ(G(x0 + iy0)).

Remark 2.10. We can just add a perturbation onto the imagine axis and obtain the information
of the point.

Proof. By proposition 2.8, we have

− 1

π
ℑ(G(x0 + iy0)) = − 1

π

∫
ℑ 1

x0 + iy0 − x
µ(x) dx (1)

= − 1

π

∫
ℑ x0 − x− iy0
(x− x0)2 + y20

µ(x) dx (2)

=

∫
1

π

y0
(x− x0)2 + y20

µ(x) dx. (3)

Notice that 1
π

y0

(x−x0)2+y2
0
is a ”good” kernel, and thus as y0 → 0∫

1

π

y0
(x− x0)2 + y20

µ(x) dx→ µ(x0).

Return to the Theorem 2.7, by proposition 2.9

µ(x0) = − 1

π
lim

y→0+
ℑ
(
1

2

[
(x+ iy)−

√
(x+ iy)2 − 4)

])
=

{
0 , |x| > 2;
√
4−x2

2π , |x| ≤ 2.
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Now we are prepared to formally state and prove the semi-circle law.

Theorem 2.11. Let λ1 < ... < λN be eigenvalues of GβE. Set xi = λi
√

2
βN and let µN be their

empirical measure: µN = 1√
N

∑N
i=1 δxi

. Then

lim
N→∞

µN =
1

2π

√
4− x21|x|≤2 = µcircle(x)

weakly in probability, which means ∀ bounded continuous function f(x)

lim
N→∞

∫
R
f(x)µN (x) =

∫
R
f(x)µ(x) dx.

Proof. Step 1 The results hold for f(x) = xk.
Step 2 The results hold for any polynomials.
Step 3 Take L > 2, the results hold for f(x) = 1|x|>Lx

k. We have∣∣∣∣∫ f(x)µN (dx)

∣∣∣∣ = ∣∣∣∣∫ xkµN (dx)

∣∣∣∣
≤ L−2m

∫
|x|≥L

x2k+2mµN (dx)

→ L−2m

∫
x2k+2mµ(dx)

≤ L−2m22k+2m = 22k
(
2

L

)m

→ 0.

Step 4 By step 3, we can restrict the support set of f on a compact set, i.e. [−4, 4]. Apply the
Weierstrass theorem and we get the proof.

At last, we give three generalizations of the semi-circle law. Next theorem tells us the gaussian
assumption of the semi-circle law is not neccessary.

Theorem 2.12. Let zij , i < j be i.i.d. random variables with finite moments. Ezij = 0 and
Ez2ij = 1

2 . Let Yi be i.i.d. with finite moments. Then the semi-circle law still holds for the matrix
with entries Yi and zij.

Theorem 2.13 (Marchenko–Pastur Law). Consider Laguerre β-ensemble N ≤ M , and its density
is ∏

i<j

(λj − λi)
β

N∏
i=1

λ
β
2
i e

−λi
2 .

Let xi = λi

βN , then when M,N → ∞ with thermodynamics condition M
N → C ≥ 1. Then µN =

1
N

∑N
i=1 δxi

N→∞−−−−→ distribution on R>0 with density (λ+−x)(x−λ−)
x 1λ−<x<λ+ , where λ± = λ±(C).

Theorem 2.14 (Wachter Law). Consider Jacobi β-ensemble with N ≤ K ≤ T and density func-

tion
∏

i<j

∏N
i=1 λ

β
2 (K−N+1)−1
i (1 − λi)

β
2 (T−N−K+1)−1. Assume N,K, T → ∞ with thermodynamics

condition K
T → C1 amd N

T → C2 ≪ C1, C1 + C2 < 1. Then µN = 1
N

∑N
i=1 δxi

→ distribution on

R>0 with density

√
(λ+−x)(x−λ−)

x(1−x) 1λ−<x<λ+
, where λ± = λ±(C1, C2).

12



3 Feb 4th

3.1 Point process

In the last lecture, we discuss macroscopic behavior of eigenvalues, and today we are going to focus
on the microscopic behavior of eigenvalues of local limits. We view eigenvalues as N points on the
label line, and the limits here can be split into two classes

• Bulk limit: limit somewhere in the middle, so that practicles extend in both directions from a
reference point.

• Edge limit: focus on the largest/smallest eigenvalue, so that the limit is a semiinfinite config-
uration: x1 < x2 < ... or x1 > x2 > x3 > ....

The question is how to describe random infinite point configurations. And the difficulty lies in
that there is no good underlying configurations.

Assume X is a statespace with topology structure, and we can give the definition of the config-
uration.

Definition 3.1 (Point configuration and window). Define a locally finite subset of X as point
configuration and Conf(X ) be the set of all the point configuration. Define window as compact
subset of X. The window induce a measure

NA(X) = # points of A in X.

We state that the configuration has intrinsic Borel structure, which means Conf(x) is the minimal
σ− algebra which makes all NA measurable functions. We can ask questions about probability which
can be inferred from random variables NA. For instance, P (No particles in [a, b]).

Example 3.2. (Bernoulli point process) Let X = Z and for each a ∈ Z, we place a particle there
with probabilities 0 < p < 1. Take A ⊂ Z containing n elements, then

P(NA = k) = pk(1− p)n−k

(
n

k

)
, for 0 ≤ k ≤ n.

NA and NB are independent if A
⋂
B = ∅.

Example 3.3. (Poisson point process) Let X = R and λ ∈ R, for A ⊂ R, we have NA ∼ Poi(λ|A|),
which means

P(NA = k) = e−λ|A| (λ|A|)k

k!
, for k = 0, 1, 2, ...

For disjoint A1, ..., Am, we have NA1
, ..., NAm

are independent.

We can derive Poisson point process by taking p→ 0 in Bernoulli point process and let Z → mZ.
Here we give an intuitive derivation (choose λ to be the probability)

P(NA = k) =

(
(b− a)m

k

)(
λ

m

)k (
1− λ

m

)(b−a)m−k

=
1

k!
e−k ((b− a)m)(b−a)m

((b− a)m− k)(b−a)m−k

(
λ

m

)k (
1− λ

m

)(b−a)m−k

=
e−k

k!
(λ(b− a))k

((
1− λ

m

)(
1 +

k

(b− a)m− k

))(b−a)m−k

= e−k (λ(b− a))k

k!
e−(b−a)λek

= e−(b−a)λ (λ(b− a))k

k!

13



By the construction of Lebesgue measure, we derive the results for arbitrary A.
Now we introduce a tool for describing point processes – ”correlation function”.

Definition 3.4 (Correlation function). Assume X is descrete and X is a point process of X . The
n-th correlation function ρn is a function of n distinct variables.

ρn(x1, ..., xn) = P(x1 ∈ X, ..., xn ∈ X).

Example 3.5 (Bernoulli).
ρn(x1, ..., xn) = pn.

Proposition 3.6. For discrete X, the sequence of functions ρ1, ρ2, ... uniquely describe the law of
X.

Proof. The law of X is the joint law of all NA, and also equals to all probabilities of the sort

P
(

a1 ∈ X, a2 ∈ X, ..., an ∈ X
b1 /∈ X, b2 /∈ X, ..., bn /∈ X

)
.

By inclusive-exclusive formula, we can get the results.

Definition 3.7. The n-th correlation measure ρn is a symmetric measure on X n such that for any
compactly supported bounded measurable f : X n → R, we have

∫
Rn

fρn(dx1, ...,dxn) = Ex

 ∑
x1,...,xn distinct

f(xi1 , ..., xik)

 .
Proposition 3.8. If X is discrete, then this is the same definition as before.

Proof. Both sides are linear in f , so we can take

f(x1, ..., xn) = 1x1=a1,...,xn=an
.

and the theorem follows.

Remark 3.9. Often we take X = R and µ is the Lebesgue measure so that ρn(x1, ..., xn) dx1...dxn ≈
P (there are particles in [x1, x1 + dx1]

⋃
...
⋃
[xn, xn + dxn]).

In Homework 2, we can prove for poisson process of intensity λ, ρn(x1, ..., xn) w.r.t Lebesgue
measure.

Proposition 3.10. For compact A ⊂ X , we have

E [NA(NA − 1)...(NA − n+ 1)] =

∫
An

ρn(dx1, ...,dxn).

Proof. Take f = 1A1
(x)...1An

(x) and we get the proof.

Then we state a theorem without proof.

Theorem 3.11. Under mild growth conditions, correlation measures exist and unique determine
the law of the point process.

Notice that in proposition 3.10, ρn are linked to moments of NA, so we need conditions similar
to the ones in ”Moment problem for random variables”. We give the following proposition.

14



Proposition 3.12. Take a point process formed by N particles X1, ..., XN with joint probability
density P(dx1, ...,dxN ) assumed to symmetric w.r.t. permutations of x1, ..., xN .

ρn =

{
0 , for n > N ;

N !
(N−n)!

∫
xn+1,...,xN∈X ρN (dx1, ...,dxN ) , for n ≤ N.

Proof. When n > N , we can’t choose n distinct particles from [N ]; and for n ≤ N ,

EX

[∑
f(xi1 , ..., xin)

]
=

∫
X N

∑
xi1

,...,xin distinct

f(xi1 , ..., xin)ρN (dx1, ...,dxN ).

By symmetry, we derive the proof.

3.2 Correlation kernel

Now we introduce an important class.

Definition 3.13 (Determinantal). A point process X is determinantal if there ∃ k(x, y) - correlation
kernel on X ×X such that correlation functions with respect to some reference measure µ have the
form

ρN (x1, ..., xN ) = det[k(xi, xj)]
N
i,j=1

Remark 3.14. 1. The order of xi does not matter.

2. Replacement k(x, y) with f(x)
f(y)k(x, y) leads to the same correlation functions.

3. Reduction of complexity: all ρn are encoded in a single function k(x, y).

Example 3.15 (Poisson process). For Poisson process ρn = λn is determinantal with k(x, y) =
λδ(x = y)

Next, we introduce another important class.

Definition 3.16. (Biorthogonal ensemble) Consider space X with reference measure µ. An N -point
biorthogonal ensemble is a probability measure on {x1, ..., xN} ⊂ X of the form

ρN (dx1, ...,dxN ) = CN det[ϕi(xj)]
N
i,j=1 det[ψi(xj)]

N
i,j=1µ(dx1)...µ(dxN ).

for constant CN > 0 and functions ϕi, ψj such that
∫

X ϕi(x)ψj(x) <∞ for all i, j = 1, ..., N .

Example 3.17. Consider measure on RN of density ∼
∏

i<j(xi − xj)
2
∏N

i=1 V (xi). Then choose
ϕi(x) = arbitrary degree (i − 1) polynomials, and similar for ψj. Choose µ(dx) = V (x) dx. Then,
by Vandermonde’s determinant, we have

det[ϕi(xj)]
N
i,j=1 =

∏
i<j

(λj − λi).

Remark 3.18. The derivation of Vandermonde’s determinant is as follows: The degree of the

polynomials is (N−1)N
2 , and λi − λj is a factor of the determinant.

Theorem 3.19. Biorthogonal ensemble is a determinantal point process with

K(x, y) =

N∑
i,j=1

ϕi(x)ψj(y)[G
−⊤]ij

15



Remark 3.20. If ϕi and ψj are biorthogonal, which means∫
ϕiψjµ(dx) = diδ(i = j),

then G−⊤ is easy to calculate.

Proof. Step 1 We first calculate CN :

C−1
N =

∫
X N

det[ϕi(xj)]
N
i,j=1 det[ψi(xj)]

N
i,j=1µ(dx1)...µ(dxN )

=
∑
σ,τ

(−1)στ
N∏
i=1

ϕσi(xi)ψτi(xi)µ(dxi)

= N ! det(G).

Step 2 Notice that

detGdet[ϕi(xj)]
N
i,j=1 det[ψi(xj)]

N
i,j=1 = 1

We have

ρN (x1, ..., xN ) =

∫
X N

det[ϕi(xj)]
N
i,j=1 det[ψi(xj)]

N
i,j=1µ(dx1)...µ(dxN ).

Step 3 We can choose

K(xi, xj) = (ϕ(xi))(G
−⊤)(ψ(xj))

⊤.

Corollary 3.21 (GUE). For N−particle GUE eigenvalues of density ∼
∏

i<j(xi−xj)2
∏N

i=1 exp(−
x2
i

2 ),
it is a determinantal point process with correlation kernel

kN (x, y) =

N∑
k=0

Hk(x)Hk(y)

⟨Hk, Hk⟩
· e−

y2

2

w.r.t Lebesgue measure, where Hn(x) is Hermite polynomial.

Remark 3.22. It seems the kN ∗(x, y) is not symmetric, but we can multiply an f(x)
f(y) and transform

e−
y2

2 into e−
x2+y2

4 .

3.3 Properties of Hermite polynomial

In this section, we take a review of Hermite polynomials.

Definition 3.23 (Hermite polynomial). Hn(x) is defined as

• Hn(x) = xn + an−1x
n−1 + ...+ a0 for n = 0, 1, 2, ....

•
∫
RHn(x)Hm(x)e−

x2

2 =
√
2πn!δ(n = m).

Proposition 3.24. We have

Hn(x) = (−1)ne
x2

2
∂n

∂xn
e−

x2

2

=
n!

2πi
(−1)ne

x2

2

∮
x

e−
z2

2

(z − x)n+1
dz

=
n!

2πi

∮
O

e−
z2

2 +zx

zn+1
dz

16



Proof. The first line follows from integration by parts. The second line is residue formula and the
third kine is Integration by substitution.

Corollary 3.25.
Hn+1(x)− xHn(x) + nHn−1(x) = 0.

Proof.

LHS =
n!

2πi

∮
O

e−
z2

2 +zx

zn+1
[
n+ 1

z
− x+ z] dz =

n!

2πi

∮
O

d

(
e−

z2

2 +zx

zn+1

)
= 0.

Proposition 3.26. The sum in det of kN (x, y) telescopes to

N−1∑
k=0

Hk(x)Hk(y)

⟨Hk, Hk⟩
=

1

⟨HN−1, HN−1⟩
HN (x)HN−1(y)−HN−1(x)HN (y)

x− y
.

Proof. Induction. Use Corollary 3.25.
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4 Feb 11th

4.1 Steepest Descent

Today we use the Hermite polynomials and relative kernel for asymptotic analysis. The main result
is as follows.

Theorem 4.1. Take s ∈ (−2, 2), then

lim
N→∞

1√
N
KGUE

N (s
√
N +

x√
N
, s
√
N +

y√
N

) = Kρ
sin(x, y)e

s
2 (x−y),

where

Kρ
sin(x, y) =

{
sin[πρ(x−y)]

π(x−y) , x ̸= y;

ρ , x = y;

and

ρ =
1√
2π

√
4− s2.

Remark 4.2. If we take x = y, we have

K(x, x) → ρ,

which recovers the semi-circle law.

Remark 4.3. Eigenvalues live on [−2
√
N, 2

√
N ], and we expect spacing of order 1√

N
(the behaviour

of eigenvalues align with x√
N
). We call the limit process at β = 2 sine process of intensity ρ.

Proof. (for s = 0) First, we recall some important properties of Hermite polynomials Hn:

• Hn(x) = xn + an−1x
n−1 + ...

•
∫
RHn(x)Hm(x) =

√
2π n! δn=m

• (By induction) For even n, Hn(x) = n! (−1)
n
2

∑n
2
m=0

(−1)m

(2m)!(n
2 −m)!2

n
2

−mx
2m.

• (By induction) For odd n, Hn(x) = n! (−1)
n−1
2

∑n−1
2

m=0
(−1)m

(2m+1)!(n−1
2 −m)!2

n−1
2

−m
x2m+1.

For even n,

Hn(
x√
n
) =

n! 2−
n
2 (−1)−

n
2(

n
2

)
!

n
2∑

m=0

(
n
2

)
...
(
n
2 −m+ 1

)(
n
2

)m x2m

(2m)!
(−1)m → n! 2−

n
2 (−1)−

n
2(

n
2

)
!

cosx.

And for odd n,

Hn(
x√
n
) =

n! 2−
n−1
2 (−1)−

n−1
2(

n−1
2

)
!
√
n

n−1
2∑

m=0

(
n−1
2

)
...
(
n−1
2 −m+ 1

)(
n
2

)m x2m+1

(2m+ 1)!
(−1)m → n! 2−

n−1
2 (−1)−

n−1
2(

n−1
2

)
!
√
n

sinx.

And we have

KN (
x√
N
,
y√
N

) =

√
N

N !
√
2π

HN ( x√
N
)HN−1(

y√
N
)−HN−1(

x√
N
)HN ( y√

N
)

x− y

=
2−N+1

N !
√
2π

N !(N − 1)!(−1)(
N
2

)
!
(
N−2
2

)
!

cosx sin y − sinx cos y

x− y

→ sin(x− y)

x− y
.
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for general s.

Proposition 4.4. We have

•

Hn(x) =
1

i
√
2π

∫ i∞

−i∞
wne

(x−w)2

2 dw.

•
Hn(ix) =

in√
2π

∫ ∞

−∞
tne−

(t−x)2

2 dt.

Proof. We apply the properties of characteristic function of N (0, 1).

1√
2π

∫ ∞

−∞
e−

t2

2 +itx dt = e−
x2

2

Take derivations for n times at each side

Hn(x) = (−1)ne
x2

2 [
∂n

∂xn
e−

x2

2 ] =
1√
2π

(−i)n
∫ ∞

−∞
tne−

t2

2 +itx+ x2

2 dt.

Change t into it and we get the proof.

Now we can apply Proposition 4.4 to our problem.

Corollary 4.5. KN (x, y) has a double contour integral form

1

(2πi)2

{ wNe
w2

2 −wy

zNe
z2

2 −zx

dw dz

w − z

Proof. By Hk(x)
k! = 1

2πi

∮
e−

z2

2
+zx

zN+1 dz and Proposition 4.4,

KN (x, y) =
1√
2π

N−1∑
k=0

Hk(x)

k!
Hk(y)e

− y2

2 =
1

(2πi)2

{ wNe
w2

2 −wy

zNe
z2

2 −zx

N−1∑
k=0

wk

zk+1
dw dz.

Rearrange the contour: |z| < |w| and we have

N−1∑
k=0

wk

zk+1
=

1

w − z
.

Return to our problem, we want to analyze

1√
N
KN (s

√
N +

x√
N
, s
√
N +

y√
N

) =
1

(2πi)2

{ exp(N(logw + w2

2 − ws))

exp(N(log z + z2

2 − zs))
exp(zx− wy)

dw dz

w − z
.

Now we need to introduce a strong tool to calculate the asymptotic property of the integral called
”steepest descent” or ”saddle point method”.

Remark 4.6. The method is highly related to the Landau’s calculation in statistical physics – use
Taylor’s expansion to analyze the phase transition. First, we warm up by exploring two interesting
and familiar examples.
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Example 4.7 (Stiring’s formula). Here we are going to prove

n! =
√
2πn

(n
e

)n
(1 + on(1)).

Proof.

n! = Γ(n+ 1) =

∫ ∞

0

xne−x dx = nn+1

∫ ∞

0

exp(−n(y − log y)) dy.

The minimum of y − log y is y = 1, and notice that

y − log y = 1− 1

2
(y − 1)2 +O((y − 1)3).

By setting y = 1 + z√
n
, we have

n! = nn+1 1√
n

∫
exp(−n− z2

2
+O(

1√
n
)) dz.

which derives the result

n! =
√
2πn

(n
e

)n
(1 + on(1)).

Example 4.8 (CLT of binomial distribution). Here we are going to prove(
n

k

)
=

1 + on(1)√
2πn

1

αk+1/2(1− α)n−k+1/2

where α = k
n . The formula can be directly derived from the CLT, but here we provide a new proof

by steepest descent.
The genius idea is to observe that(

n

k

)
=

∮
O

(1 + z)n

zk+1
dz =

∮
O

exp(−n(α log z − log(1 + z))) dz.

The critical point zc =
α

1−α , and we have f(z) = f(zc) +
f ′′(zc)

2 (z − zc)
2 +O((z − zc)

3). Notice that
from complex analysis, we have

Proposition 4.9. There exists some contour around O, passing through the critical point zc, such
that ℜ(f) is maximized at zc.

Take the contour as above, we give(
n

k

)
=

1 + o(1)

2πi

(1 + zc)
n

zk+1
c

∫
exp(

1

2

(1− α)3

α
(z − zc)

2) dz

=
1 + on(1)√

2πn

1

αk+1/2(1− α)n−k+1/2
.

Return to our problem, let f(z) = log z + z2

2 − zs, and we want to analyze

1

(2πi)2

{ exp(N(f(w)− f(z))) exp(zx− wy)

w − z
dw dz.
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To calculate the integral, we design a new contour, which satisfies

ℜ(f(w)− f(z)) ≤ 0,

the equality holds if and only if z = zc. By the steepest descent, we localize w = zc +
w̃√
N

and

z = zc +
z̃√
N
, where zc =

s±i
√
4−s2

2 . The integrand decays to 0 at the order of 1√
N
.

{
→ 0 +

∫ zc

z̄c

exp(z(x− y)) dz︸ ︷︷ ︸
residual at w = z

=
1

π

exp(zc(x− y))− exp(z̄c(x− y))

(x− y)2i

= eℜ(zc(x−y)) sin[ℑ(zc(x− y))]

π(x− y)

= e
s
2 (x−y) sinπρ(x− y)

π(x− y)
.

Figure 4: Choose specific contours for integral

Remark 4.10. For |s| > 2, we can show that double contour integrand decays exponential fast in
N .

Corollary 4.11. For |s| < 2, the point process {
√
N(λi − s

√
N)} converges in distribution as

N → ∞ to the sine process of intensity ρ = 1
2π

√
4− s2.

Proof. (proof sketch)
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• There exists some DPP with kernel Kρ
sin.

• Express distributions of NA and deduce convergence from Theorem 1.

Next we consider |s| = 2. We give an intuitive understanding first. Consider the semi-circle law
and let yN−k√

N
≈ yN−k. We have ∫ 2

yN−k

1√
2π

√
4− x2 dx =

k

N
.

As the integral can be approximated as (2− yN−k)
3/2 and we have λN − λN−1 ≈ N− 1

6 .
Another intuitive understanding comes from the spacing. The spacing of

√
NλN has the order

N
1
3 . Now, we introduce the theorem as belows.

Theorem 4.12.

lim
N→∞

N− 1
6KGUE

N (2
√
N + xN− 1

6 , 2
√
N + yN− 1

6 )e(y−x)N
1
3 = KAiry(x, y)

:=
Ai(x)A

′
i(y)−A′

i(x)Ai(y)

x− y
,

where
A′′

i (x) = xAi(x) and Ai(x) → 0 as x→ ∞.

Proof. (proof sketch) The idea is similar to the proof of |s| < 2. The only difference is that Taylor’s

expansion here is to the 3-rd order and we need to use N
1
3 to balance the N in steepest descent

method.
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5 Feb 18th

5.1 Tracy-Widom, Gaudin-Mehta

In today’s lecture, we focus on

• Largest eigenvalue.

• Gaps/spacings between eigenvalues.

Theorem 5.1 (Gap probability). Let X be a DPP on X with correlation kernel K(x, y) w.r.t
measure µ. Then

P(there are no particles in A) = det [Id−K]L2(A,µ)

Remark 5.2. If K has finite rank, i.e. K(x, y) =
∑m

i=1 ϕi(x)ψi(y), the expansion can be reduced
to m×m determinant

det(I − UV ) = det(I − V U).

Proof. (Discrete X and finite A) By inclusive-exclusive theory

P(there are no particles in A) = 1−
∑
a

P(no particles at a) +
1

2!

∑
a,b

P(no particles at a, b) + ...

= 1−
∑
a

ρ1(a) +
1

2!

∑
a,b

ρ2(a, b) + ...

As ρm(x1, ..., xm) = detK(xi, xj)1≤i,j≤m, by Fredholm expansion, we get the result.

Remark 5.3. We generalize the result

E
∏
x∈X

(1− ϕ(x)) ≤ Edet(Id−ϕK)

Definition 5.4. Let a1 ≥ a2 ≥ ... be point of the Airy2 point process, then the law of a1 is called
Tracy-Widom Distribution (TW2, TWGUE , F2, FGUE).

Proposition 5.5. The distribution of TW2 is

P(TW2 ≤ t) = det [Id−KAiry]L2(t,∞).

Proof. We have
P(TW2 ≤ t) = P(there are no particles in (t,+∞)).

By some numerical results, the TW2-distribution has some properties

• E [TW2] ≈ −1.77

• Var (TW2) ≈ 0.81

• P(TW2 ≥ s) ≍ exp(− 4
3s

3/2)

• P(TW2 ≤ s) ≍ exp(− 1
12s

3)

The rigorous analysis is as follows.
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Theorem 5.6. We have

P(TW2 ≤ t) = exp(−
∫ ∞

t

(x− t)2q(x)2 dx),

where
q′′(x) = xq(x) + 2q(x)3.

Remark 5.7. We have q(x) ≈ Ai(x) as x→ ∞.

By analyzing P(TW2 ≤ t) and P(N−1/6(λN − 2
√
N) ≤ t), we can derive

Theorem 5.8.
N−1/6(λN − 2

√
N)

d−→ TW2.

Next, we care about the the second question: the spacing between two eigenvalues.

Definition 5.9. For a shift invariant point process on R, define its spacing as

Sρ = law of first positive point conditioning on a point at origin.

Remark 5.10. It is different from the law of the distance S′
ρ between the first positive and the first

negative point. Usually Sρ > S′
ρ.

Theorem 5.11. For a shift-invariant point process on R of density ρ1 and assuming all ingredients
exist and are smooth, we have

∂2

∂x2
P(no articles in (0, x)) = ρ1 · PSρ(x)

Proof. (Heuristic derivation in a discrete version) For a shift-invariant point process on Z. The left
hand is

P(there are particles at l, but no articles at 1, ...l − 1)

−P(there are particles at l, but no articles at 0, ...l − 1),

which also equals to

P(there are particles at 0, l, but no articles at 1, ...l − 1) = ρ1 · PSρ
(x)

Remark 5.12. The probability for spacing in the bulk of GUE becomes

∂2

∂x2
det (I −Ksin)L2(0,x).

The result is an application of the theorem in the last lecture.
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Figure 5: The blue curve represents ∂2

∂x2 det(Id−Ksin), and the orange curve represents 32s2

π2 e
− 4s2

π .

5.2 General beta

Now our question is how to generalize β = 2 to other values?
In 1960’s, for β = 1, 4, there is a parallel but more complicated theory based on Pfaffian Point

Process. (A simple understanding for Pfaffian of A is
√

det(A).)
In 2000’s, there emerges theory which covers all β > 0 in a uniform way. It is very different from

previous method, for no correlation functions are known for general β and one needs to proceed
differently with different β.

Theorem 5.13. Consider rescaled GβE of density

∏
i<j

(λj − λi)
β

N∏
i=1

exp

(
−βλ

2
i

4

)
.

Then for fix i

lim
N→∞

N1/6(λN−i − 2
√
N)

d
= ai,

where λ1 < ... < λN are eigenvalues of GβE and a1 > a2 > ... is Airyβ process defined as the set

of eigenvalues of the stochastic Airy Operator SAOβ = ∂2

∂x2 − x+ 2√
β
W ′(x) acting on L2(R≥0) and

vanishing at x = 0.

Remark 5.14. The advantages are the formula and the dependence of β are simple. The disadvan-
tage is that we need to make sense of these eigenvalues. We give three approaches as follows, which
are all based on the integral by parts.

Remark 5.15. This note is a fantastic material to understand the SAOβ: note.
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Approach 5.16 (Rauirez-Rider-Virag; Bloemendal-Virag). Idea: Use variational characterization
of eigenvalues and eigenfunctions of self adjoint operators

Consider Hilbert space L∗ of functions of [0,+∞] with f(0) = 0 and

||f ||2∗ =

∫ ∞

0

[
(f ′(x)2 + (1 + x)f2(x))

]
dx <∞

Then L∗ is completion of smooth, compactly supported functions by this form.
Define a quadratic form

H(f, g) = ⟨f, SAOβg⟩ =
∫ ∞

o

f ·
(
∂2

∂x2
g − xg +

2√
β
w′g

)
dx

= −
∫ ∞

0

f ′(x)g′(x)dx+

∫ ∞

0

(
x2

2
− 2√

β
w

)
(fg)′dx

The last expression does not have w′ and is a well-defined r.v. Then (ai, fi) is maxinum of H(f, f)
over f ∈ L∗, ||f || = 1.

Approach 5.17 (Bloemendol, UToromto Phd Thesis). Transform the function by

f̃ = f · e
∫ x
0

2√
β
w(y) dy

Then

∂2

∂x2
f =

∂2

∂x2

(
f̃ · e−

∫ x
0

2√
β
w(y) dy

)
=

∂

∂x

(
f̃ · e−

∫ x
0

2√
β
w(y) dy · (− 2√

β
w(y)) + f̃ ′ · e−

∫ x
0

2√
β
w(y) dy

)
= − 2√

β
w′(x) · e−

∫ x
0

2√
β
w(y) dy · f̃ +

4

β
· w2(x) · e−

∫ x
0

2√
β
w(y) dy · f̃

− 2√
β
w(x) · e−

∫ x
0

2√
β
w(y) dy · f̃ ′ + e

−
∫ x
0

2√
β
w(y) dy · f̃ ′′

So

SAOβf = λf ⇔
(
∂2

∂x2
− 2√

β
w(x)

∂

∂x
+

4

β
w2(x)− x

)
f̃ = λf̃

which can be solved by the classical theory of S-L operators.

Approach 5.18 (Gorin-Shkolnikov). Using Feynman Kac’s Formula for SAOβ, we have

K(x, y;T ) =
1√
2πT

exp

(
− (x− y)2)

2T

)
EBx→y [1B≥0 exp

(
−1

2

∫ T

0

B(t) dt+
1√
β

∫ ∞

0

La(B) dW (a)

)
]

where Bx→y is the Brownian bridge from x → y in times t ∈ [0, T ]. W is a Brownian motion
independent of B.

Then we give a heuristics for Theorem 5.13. From the second lecture, we have

Tβ =


N (0, 2

β )
χβ(n−1)√

β
· · · 0

χβ(n−1)√
β

N (0, 2
β ) · · · 0

...
...

. . .
...

0 0 · · · N (0, 2
β )


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We treat N as N×N matrix acting linearly on f( 1
N1/3 ), (

2
N1/3 ), ..., (

N
N1/3 ), and thus N1/6(T −2

√
N)

becomes an operator. Notice that

χβ(N−K)√
β

=
√
N −K + N

(
1

2β

)
≈

√
N − 1

2

√
N
K

N
+ N

(
1

2β

)
.

f(x) →N1/6

(
f(x)N

(
0,

2

β

)
+ [f(x+N−1/3) + f(x−N−1/3)]N

(
0,

1

2β

))
+N2/3(f(x+N−1/3)− 2f(x) + f(x−N−1/3))

−1

2
x(f(x+N−1/3) + f(x−N−1/3))

≈N1/6

(
f(x)N

(
0,

4

β

))
+ f ′′(x)− xf(x).

Remark 5.19. N1/6 is the correct scale if we try to calculate

N−1/3
N∑
i=1

f

(
i

N1/3

)
= Ω(1)

for compact support f .
In order to make this rigorous, start from one of the three approaches, do same opperator for

tridiagonal matrix and pass to the limit in the result.
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6 Feb 25th

6.1 Corners and Bessel functions

In this lecture, we focus on the general question: How eigenvalues play with algebraic operations?

• Cutting Corners. (Lecture 6)

• Addition A,B 7→ A+B. (Lecture 8+9)

• Multiplication A,B 7→ AB. (No time)

First, we give the definition of ”Orbital measure”.

Definition 6.1. Take λ = (λ1, ..., λN ) ∈ R,

Orbit(λ) = all matrices with eigenvalues λ equipped with uniform measure.

Now we need to make sense of this uniform measure.

Approach 6.2. This is a smooth compact manifold embedded into the Euclidean space of all symmet-
ric matrices (⟨X,Y ⟩ = tr(XY )). And there is a well-defined metric and volumn form on Orbit(λ),
which can be renormalized to have volumn 1.

Example 6.3. Let β = 1, N = 2,

X =

(
a b√

2
b√
2

c

)
,

whose eigenvalues = (λ1, λ2). By the properties of trace and determinant,{
a+ c = λ1 + λ2

ac− b2

2 = λ1λ2
.

Change the coordinates to (a+c√
2
, a−c√

2
, b) , and we have{

a+c√
2

= λ1+λ2√
2

(a−c√
2
)2 + b2 = (λ1+λ2)

2

2

.

So (a, b, c) solving this forms a circle, which has a natural uniform measure.

Approach 6.4. Matrix = Eigenvalues + Eigenvectors.

Orbit(λ) = image of O(N) or U(N) under the map,

and Haar measure on O(N) and U(N) directs to the orbit measure.

Example 6.5. O(2) has two components(
cosϕ − sinϕ
sinϕ cosϕ

)
and

(
cosϕ sinϕ
sinϕ − cosϕ

)
.

WLOG, we choose the first rotation matrix.(
cosϕ − sinϕ
sinϕ cosϕ

)(
λ1 0
0 λ2

)(
cosϕ sinϕ
− sinϕ cosϕ

)
=

(
λ1 cos

2 ϕ+ λ2 sin
2 ϕ (λ1 − λ2) sinϕ cosϕ

(λ1 − λ2) sinϕ cosϕ λ1 sin
2 ϕ+ λ2 cos

2 ϕ

)
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Here we can choose {
b = λ1−λ2√

2
sin 2ϕ

a−c√
2

= λ1−λ2√
2

cos 2ϕ
,

which gives the same circle and the same uniform measure induced from ϕ ∈ [0, 2π].

Theorem 6.6. Let M be a random element of Orbit(λ) and let µ1 ≤ ... ≤ µN−1 be eigenvalues of
its (N − 1)× (N − 1) corner. Then for β = 1, 2, 4,

• λ1 ≤ µ1 ≤ λ2 ≤ ... ≤ µN−1 ≤ µN almost surely.

• The density of µ w.r.t Lebesgue measure is

Γ(N β
2 )

(Γ(β2 ))
N

∏
i<j

(µj − µi)

N−1∏
i=1

N∏
j=1

(µi − λj)
β
2 −1

∏
i<j

(λj − λi)
1−β .

Our main technique is the lemma as follows.

Lemma 6.7. The law of µ1, ...µN−1 is the same as N − 1 roots of equation

N∑
i=1

ξi
z − λi

= 0,

where ξi
iid∼ χ2

β.

Proof. We have µ1, ..., µN−1 are N − 1 roots of

det

U diag(Λ)U∗ − zIN

0
...
0

0 · · · 0 1


Multiplies

(
U∗ 0
0 1

)
on the left and

(
U 0
0 1

)
on the right, we get

det

U diag(Λ)U∗ − zIN

0
...
0

0 · · · 0 1



=det


λ1 − z 0 · · · 0 u∗1

0 λ2 − z · · · 0 u∗2
...

...
. . .

...
...

0 0 · · · λN − z u∗N
u1 u2 · · · uN 0

 = −
N∑
i=1

uiu
∗
i

λi − z

∏
(λi − z).

Actually, (u1 . . . , uN ) is a row of uniformly random orthogonal (unitary) matrix, which is equivalent
to the uniformly random unit vertor in RN (CN ), which is(

v1√
|v1|2 + · · ·+ |vN |2

,
v2√

|v1|2 + · · ·+ |vN |2
, . . . ,

vN√
|v1|2 + · · ·+ |vN |2

)
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where (v1, . . . , vN ) is i.i.d. Guassian vector. Notice that viv
∗
i ∼ χ2

β (uiu
∗
i =

viv
∗
i∑N

i=1 |vi|2
= ξi∑N

i=1 ξi
), we

find µ1, . . . , µN solve

−
∏
(λi − z)∑N
i=1 ξi

(
N∑
i=1

ξi
λi − z

)
= 0

Now we are ready to prove the theorem.

Proof. Set φi = ξi∑N
i=1 ξi

(= uiu
∗
i ). Then φ ≥ 0,

∑N
i=1 φi = 1. The joint density of φ1, . . . , φN is

given by the Dirichlet distribution of density

p(x1, . . . , xN ) =
Γ(N β

2 )

Γ(β2 )
N
x

β
2 −1
1 · · ·x

β
2 −1

N dx1 · · · dxN−1

Because ξi are all Γ-distribution with density

1

2β/2
1

Γ(β2 )
x

β
2 −1e−

x
2 , x > 0

and then integrate them on the condition x1 + · · ·+ xN . By the Lemma, we multiply
∏N

i=1(z − λi)

with A =
∑N

i=1
ξi

λi−z gives a polynomial equations of degree N − 1, so it has at most N − 1 real
roots, then A also has at most N − 1 real roots.

• When z = λi + ε (small enough), A > 0

• When z = λi+1 − ε, A < 0

Hence, there is a root in each [λi, λi+1] denoted by µi, i = 1, . . . , N − 1. Thus we porve the first
conclusion. To calculate the density of µ1, . . . , µN−1, we need to compute the Jacobian of the map:
(φ1, . . . , φN ) → (µ1, . . . , µN−1)

N∏
i=1

(z − λi)

N∑
i=1

ξi
λi − z

=

N−1∏
j=1

(z − µj)

N∑
i=1

ξi
λi − z

=

∏N−1
j=1 (z − µj)∏N
i=1(z − λi)

Multiply by z − λa, set λa to get

φa =

∏N−1
j=1 (λa − µj)∏
i ̸=a(λa − λi)

, a = 1, . . . , N

Thus
∂φa

∂µb
=

∏
j ̸=b(λa − µj)∏
i ̸=a(λa − λi)

=

∏N−1
j=1 (λa − µj)∏
i ̸=a(λa − λi)

· 1

µb − λa

Then the Jacobian is

det

[
∂φa

∂µb

]N−1

a,b=1

=

∏N−1
i,j=1(λi − µj)∏

j<i<N (λj − λi)2
∏N

i=1(λN − λi)
· det

[
1

µb − λa

]N−1

a,b=1
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While Cauchy determinant tells us that

det

[
1

µb − λa

]N−1

a,b=1

=

∏
i<j<N (µi − µj)

∏
i<j<N (λj − λi)∏

i,j(µi − λj)

which gives the Jacobian ∏
i<j<N (µj − µi)∏
i<j≤N (λj − λi)

Then we plug the

φa =

∏N−1
j=1 (λa − µj)∏
i ̸=a(λa − λi)

, a = 1, . . . , N

into p(x1, . . . , xN ) and use the expression of Jacobian, which gives the 2nd conclusion.

Corollary 6.8. Take Orbit(λ), N ×N matrix and consider eigenvalues of all principal corners. Let
xKi (1 ≤ i ≤ K ≤ N) be i-th eigenvalue of K ×K corner. Then:

• Eigenvalues form an interlacing triangular array, i.e.

xK+1
i ≤ xKi ≤ xK+1

i+1 and xNi = λi.

• The joint density of xKi is

∝
N−1∏
K=1

∏
i<j≤K

(xKj − xKi )2−β
K−1∏
a=1

K∏
b=1

(xK−1
a − xKb )β/2−1

Proof. By iteration of theorem 1.

Remark 6.9. For β = 1, 2, 4, this is a theorem. For other β > 0, this is a definition of ”β corners
process with top row λ”.

For β = 2, all factors disappear and you end up with uniform measure on interlacing array.

Example 6.10 (N=2). • For β = 2, x is uniform between λ1 and λ2.

• For β = 1, x has density (x− λ1)
−1/2(λ2 − x)−1/2.

Theorem 6.11. limβ→∞ β-corners process with top row λ = determistic (aKi ), such that

K∏
i=1

(z − aKi ) =
K!

N !

(
∂

∂z

)N−K N∏
i=1

(z − λi).

Proof. We only prove the case K = 1. By Lemma 6.7, we have(
∂

∂z

) N∏
i=1

(z − λi) =

N∏
i=1

(z − λi)

N∑
i=1

1

z − λi
= lim

β→∞

N∏
i=1

(z − λi)

N∑
i=1

χ2
Nβ/Nβ

z − λi
.
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Figure 6: The left figure demonstrates the sample GOE (N = 60) and we plot the eigenvalues of
the corner. The right figure demonstrates the roots of Hermite polynomials.

Now we introduce tools for corners processes: Multivariate Bessel functions. The key idea is
similar to the characteristic function, i.e

A 7→ FA(Z) = E[exp(tr(AZ))].

Observation 6.12. If the law of A is invariant under orthogonal/unitary conjugation, then FA(Z)
depends on Z only through eigenvalues of Z.

Example 6.13. Let A be GOE/GUE,

E[exp(tr(AZ))] = E

[
exp

(
N∑
i=1

aiizi

)]
= exp

(
N∑
i=1

z2i
2

)
.

Definition 6.14 (The Mutivariate Bessel function). For real λ and β = 1, 2, 4,

Bλ1,...,λN
(z1, ..., zN ;β) = EA∼Orbit(λ)[exp(tr(AZ))],

where z1, ..., zN is the eigenvalues of Z. The trace only depends on the eigenvalues of Z.

Remark 6.15. We recall the classic Bessel functions, which is defined as

Jα(x) =

∞∑
n=0

(−1)n

n! Γ(n+ α+ 1)

(x
2

)2n+α

.

We have J 1
2
(x) =

√
2
π

sin x√
x

We have the iterative equation:

x2J ′′
α + xJ ′

α + (x2 − α2)Jα = 0.

We have the theorem as follows.

Theorem 6.16. ∫
ei⟨a,u⟩ du =

(
2

x

)α

Γ(α+ 1)Jα(x),

where α = n
2 − 1 and x = ∥a∥.
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Remark 6.17. On the analogy of this, we take

Sn−1 ↔ Orbit(λ)

x↔ eigenvalues λ1 < ... < λn.

We now give the RMT version.

Theorem 6.18. At β = 2, we have

Bλ1,...,λN
(z1, ..., zN , 2) =

N−1∏
K=1

K! ·
det[(exp(λizj)]

N
i,j=1∏

i<j(λi − λj)(zi − zj)
.

Let’s give a restatement. By Harish-Chandra integral, we have∫
U(N)

exp(UΛU∗Z) =

N−1∏
K=1

K! ·
det[(exp(λizj)]

N
i,j=1∏

i<j(λi − λj)(zi − zj)
,

where Λ = diag{λ1, ..., λN} and Z = diag{z1, ..., zN}.

Proof. Almost the same as Theorem 6.6.

Remark 6.19. What about other values of β?

• At N = 1, Bx(x;β) = eλx for all β.

• For N ≥ 2, there is a similar series expansion of Bλ(z1, ..., zN ;β) in power series in z1, ...zN .

Theorem 6.20 (Definition). Let {xKi }(1 ≤ i ≤ K ≤ N) be β corners process with top row λ. Then

Bλ1,...,λN
(z1, ..., zN ;β) = E

exp
 N∑

K=1

zK

 K∑
i=1

xKi −
K−1∑
j=1

xK−1
j

 ,
where xKi is defined in Corollary 6.8, and we take expectation for z ∼ N (0, IN ) and matrix ∼
Orbit(λ). For β = 1, 2, 4, it is a theorem. While for other β, it is a definition.
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7 Mar 4th

7.1 Asymptotics of corners

In this lecture, we explore the limit of corners as N → ∞. There are several meanings of the limit
behavior:

• How K grows with N (fixed or obey thermodynamic conditions).

• Macroscopic limits (semicircle law) or microscopic limits (bulk or edge).

First, we consider the case K is fixed. The main result is as follows.

Theorem 7.1. Set β = 1, 2, 4, λ = (λ1, ..., λN ) depends on N . Define m(λ) = 1
N

∑N
i=1 λi, V (λ) =

1
N

∑N
i=1 λ

2
i −m(λ)2 and T (λ) = 1

N

∑N
i=1[λi −m(λ)]3. Assume

lim sup
N→∞

T (λ)1/3

V (λ)1/2
≤ C,

then

lim
N→∞

AK(λ)−m(λ) Id

V (λ)1/2

√
βN

2
= GβE.

Example 7.2 (General). Consider

1

N

N∑
i=1

δλi → µ and |λi| < C.

Example 7.3 (Particular). Consider λ1 = λ2 = · · · = λN/2 = 0 and λN/2+1 = · · · = λN = 1,

µ = 1
2δ0 +

1
2δ1. We have m(λ) = 1

2 , V (λ) = 1
4 and T (λ) = 1

8 .

Next we give a proof for β = 1 and K = 1, 2.

Proof. We have

Aλ = U

λ1 . . .

λn

U∗,

We have

Aλ
[1,1] =

N∑
i=1

λiu
2
i

d
=

N∑
i=1

λi
ξ2i∑N
j=1 ξ

2
j

,

and
Aλ

[1,1] −m(λ)√
V (λ)

=
1∑N

j=1 ξ
2
j

N∑
i=1

λi −m(λ)√
V (λ)

ξ2i .

Now we compute the 1, 2, 3 order of moments.

E

[
N∑
i=1

λi −m(λ)√
V (λ)

ξ2i

]
=

∑N
i=1(λi −m(λ))√

V (λ)
= 0,

E

[
N∑
i=1

(λi −m(λ))2

V (λ)
(ξ2i − 1)2

]
= N · E(ξ2i − 1)2 = 2N,
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E

∑∣∣∣∣∣λi −m(λ)√
V (λ)

∣∣∣∣∣
3 ∣∣ξ2i − 1

∣∣3 ≤ const ·N.

By Lindeberg’s or Lyapunov’s CLT, we have

Aλ
[1,1] −m(λ)√

V (λ)
≈ 1

N

√
2NN (0, 1).

We can multiply
√

N
2 to get the result.

On the other hand, for K = 2, we can apply the Gram-Schimidt orthogonalization to get an
orthogonal matrix. We have the two projected unit vector is

(u1, u2)
d
= (

ξ

∥ξ∥2
,
η

∥η∥2
).

Applied CLT, the diagonal element obeys N (0, 1) as proved. And the non-diagonal element is
N (0, 12 ) as E [ξ2i η

2
i ] = 1 = 1

2E [(ξ2i − 1)2].

Corollary 7.4. In the setting of Theorem 7.1, the first K rows of β−corners process {xji}1≤i≤j≤K

converge to GβE corners process.

Here we give a intuitive check for the corollary. Take λ to be 1√
N
GUE-eigenvalues. m(λ) → 0,

V (λ) → 1 and T (λ) bounded. Then

lim
N→∞

GUE[K](N) = GUE[K],

which is obviously true.
Now we consider K grows with N , and we introduce the theorem as follows.

Theorem 7.5. Suppose λ depends on N in such a way that 1
N δλi

→ µ1 and supi |λi| < C. Let

x1, ..., xK be eigenvalues of K ×K corner of Orbit(λ) and assume K
N → α. Then

1

K

K∑
i=1

δxi → µα (weakly, in probability).

We only care about the existence for now.

Remark 7.6. The statement should be true for all β, but can be found only for β = 1, 2, 4.

We here give a proof sketch for β = 1.

Proof. Let X be a N ×N corner. We start with the following expression:

1

K

K∑
i=1

(xi)
m =

1

K
Trace (Xm) = sum of finite products of elements of X

We want to apply a version of LLN or CLT to this large sum, using representation through i.i.d.
Gaussians like in Theorem 7.1. Let’s only do it for m = 1:

1

K
Trace(X) =

1

K

K∑
j=1

N∑
i=1

λi(u
(j)
i )2
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where u
(j)
i is the matrix element of the orthogonal matrix U . By

∑N
i=1(u

(j)
i )2 = 1 and symmetry,

we have

E
(
(u

(j)
i )2

)
=

1

N

Thus, we get:

1

K
Trace(X) ≈ 1

K
·K ·

∑N
i=1 λi
N

=

∑N
i=1 λi
N

This implies that the first moment of µα is the same as for µ1:∫
x dµα(x) =

∫
x dµ1(x).

The question now is how to compute µα.

Example 7.7. Consider µ1 = 1
2δ0 +

1
2δ1. We give the plot of the plot of µα as follows.

Figure 7: The behavior of µα for different α.

Now we give a new encoding of measures by functions of complex variable.

Definition 7.8 (Voivulescu, R-transform). For a compactly supported measure µ, recall Gµ(z) =∫
1

z−xµ(dx) =
1
z + 1

z2m1 +
1
z3m2 + · · ·. Now we define

Rµ(z) = G−1(z)− 1

z
: 0 7→ finity.
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Our theorem describes µα.

Theorem 7.9. We have

Rµ̃α(z) =
1

α
Rµ1(z),

where µ̃α[A] = µα[αA].

Example 7.10 (Semicircle Law). We have G(z) = 1
2 (z−

√
z2 − 4) and we can derive that G−1(z) =

z + 1
z , which implies

R(z) = z.

We have µ̃α is the same semicircle but stretched. The stretch coefficient is like

Gα =
y −

√
y2 − 4α

2α
.

Now we give a proof of Theorem 7.9 for β = 2. First, we give some lemmas.

Lemma 7.11. For Bessel functions

Bλ1,...,λn(z1, ..., zn;β = 2) = E exp

Trace
A


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn





=

N−1∏
i=1

[i!]
det[exp(λizj)]

N
i,j=1∏

i<j [(λi − λj)(zi − zj)]
.

We have
Ex1,...,xk

[Bx1,...,xk
(z1, ..., zk)] = Bλ1,...,λN

(z1, ...zk, 0
N−k).

Proof. Plug zk+1 = ... = zn = 0 into the expression.

Then we claim a key theorem as follows.

Theorem 7.12. Suppose that 1
N δλi

→ µ and supi |λi| < C. Then

1

N
logBλ1,...,λN

(Nz, 0N−1) →
∫ z

0

Rµ(u) du.

If the theorem holds we can prove the Theorem 7.9 directly. (The difference lies in plugging Nz
or Kz.) To prove Theorem 7.12, we need another lemma.

Lemma 7.13. For β = 2, we have

Bλ1,...,λN
(z, 0N−1) =

(N − 1)!

zN−1

1

2πi

∮
exp(vz)

N∏
i=1

1

v − λi
dv

Proof. By decomposition of the determinant

det [exp(λizj)] =

N∑
e=1

exp(λez1)(−1)e−1 det [exp(λizj)]i ̸=e

When z2 = . . . = zN = 0, using Bλ2,...,λN
(0, ..., 0) = 1:

Bλ1,...,λn
(z, 0N−1) =

(N − 1)!

zN−1

N∑
l=1

exp(λlz)
1∏

i ̸=l(λl − λi)

This corresponds to the residue expansion of the integral.
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Now we give the whole proof of Theorem 7.12 using steepest descent method.

Proof. By the lemma, we have

Bλ1,...,λn
(Nz, 0N−1) =

(N − 1)!

NN−1

1

zN
1

2πi

∮
exp

(
N

(
vz − 1

N

∑
log(v − λi)

))
︸ ︷︷ ︸

NF (v)

dv

Using Stirling’s approximation

(N − 1)! ≈
√
2πN

(
N

e

)N−1

we have

F (v) = vz − 1

N

∑
log(v − λi).

Solve the equation for the critical point

0 = F ′(v) = z − 1

N

∑ 1

v − λi
,

and we get
vc ≈ G(−1)

µ (z).

Omitting existence of the contour deformation:

1

N
logBλ1,...,λn

(Nz, 0N−1) = −1− log z + F (vc) + ō(1).

This simplifies to:

= −1− log z + zG(−1)(z)−
∫ G−1(z)

q

G(v)dv +
1

N

N∑
i=1

log(q − λi) + o(1)

=

∫ z

0

(
G−1(u)− 1

u

)
du+ o(1).

Here, q can be anything, for example q → ∞ is a good choice. To show coincidence, we show that
they both tend to 0 at z = 0 and that their derivatives coincide.

∂zLHS = −1

z
+G(−1)(z) + z∂zG

(−1)(z)− ∂zG
(−1)(z)G(G(−1)(z)) = G(−1)(z)− 1

z
= ∂zRHS

At last, we turn back to the example µ1 = 1
2δ0 +

1
2δ1 and demonstrate the relationship to the

Wachter’s Law.

Example 7.14. We have G(z) = 1
2 (

1
z + 1

z−1 ) and

R(z) =
z − 1 +

√
z2 + 1

2z
.

Rescaling by α, we can calculate G−1
µ̃α (z) and

µ̃α = C

√
(λ+ − x)(x− λ−)

x(α−1 − x)
.

Remark 7.15. We saw it

• When β = ∞, it is HW2. (By Theorem 6.11)

• In lecture 2, it is a limit for Jacobi ensemble = eigenvalues of two projectors.

38



8 Mar 11th

8.1 Additions of matrices and free convolution

The main question for this section is what the eigenvalue of C = A + B should be. First, we give
some examples.

Example 8.1 (N=1). Simply γ (eigenvalue of C) = α (eigenvalue of A) + β (eigenvalue of B)

Example 8.2 (N=2). By Tr(C) = Tr(A) + Tr(B), we have equality

γ1 + γ2 = (α1 + α2) + (β1 + β2) (∗)

By some spectral inequality, we can derive that

γ1 ≤ α1 + β1 (I)

γ2 ≥ α1 + β2 (II)

γ2 ≥ α2 + β1 (III)

Theorem 8.3. The triplet (α1 ≤ α2), (β1 ≤ β2), (γ1 ≤ γ2) satisfies (∗), (I), (II), (III) iff there exists
Hermitian A,B,C with such spectra and A+B = C.

The answer for the question is that there are always one equality
∑N

k=1 γk =
∑N

k=1 αk+
∑N

k=1 βk
and several inequalities.

Theorem 8.4. There exists Hermitian A,B,C with A+B+C = 0 iff there exists honeycomb with
boundaries parametrized by spectra of A,B,C.

Figure 8: Honey comb

Probabilistic point of view We see A,B as (1) r.v. (2) With uniformly random eigenvectors
(3) Independent

Then we have 2 questions:

1. What’s the law of eigenvectors of C = A+B?

2. What about N → ∞
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Theorem 8.5. Suppose that α1 ≤ α2 ≤ · · · ≤ αN and β1 ≤ β2 ≤ · · · ≤ βN depending on N in such
way that

sup
i,N

|αi|+ |βi| ≤ C

lim
N→∞

1

N

N∑
i=1

δαi
= µA

lim
N→∞

1

N

N∑
i=1

δβi
= µB

Let A,B be matrices from Orbit(α),Orbit(β) and independent. Let C = A+B having eigenvalues
γ1 ≤ γ2 ≤ · · · ≤ γN . Then

lim
N→∞

1

N

N∑
i=1

δγi
= µA ⊞ µB weakly and in probability

where µA ⊞ µB is called the free convolution of µA and µB

Proof. (Sketch of the proof.) Claim that

diag{α1, . . . , αN}+ U diag{β1, . . . , βN}U∗ = D

where U is random orthogonal/unitary and D has the same law of e.v. as γ1, . . . , γN .
Then we compute

1

N
Tr(Dk) =

1

N
(γk1 + · · ·+ γkN )

k = 1

Tr(D) =

N∑
i=1

αi +

N∑
i,j=1

u2ijβj =

N∑
i=1

αi +

N∑
i=1

βi

So
1

N
Tr(D) →

∫
xµA(dx) +

∫
xµB(dx)

k = 2

Tr(D2) = Tr(diag{α2
1, . . . , α

2
N}) + Tr(U diag{β2

1 , . . . , β
2
N}U∗)

+ 2Tr(diag{α1, . . . , αN}U diag{β1, . . . , βN}U∗)

=
N∑
i=1

α2
i +

N∑
i=1

β2
i + 2

N∑
i,j=1

u2ijαiβj

From last lecture we know uij , ui′j′ is very close to be independent. Applying LLN, we have

1

N
Tr(D2) =

1

N

N∑
i=1

α2
i +

1

N

N∑
i=1

β2
i + 2

(
1

N

N∑
i=1

αi

)(
1

N

N∑
i=1

βi

)

→
∫
x2µA(dx) +

∫
x2µB(dx) + 2

∫
xµA(dx)

∫
xµB(dx).

Intuitively, we can derive that

Var(µA ⊞ µB) = Var(µA) + Var(µB).

For larger K, the result is similar but more complicated.
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Theorem 8.6 (how to compute µA ⊞ µB).

RµA⊞µB (z) = RµA(z) +RµB (z)

where Rµ(z) = G−1
µ (z) − 1

z and G(z) =
∫

1
z−xµ(dx) =

∑∞
k=1mkz

−k−1 (mk is the k-th moment of
µ).

Lemma 8.7. For β = 1, 2, 4,

E[Bγ1,...γN
(z1, . . . , zN )] = Bα1,...αN

(z1, . . . , zN ) ·Bβ1,...βN
(z1, . . . , zN ) (∗∗)

Proof.

RHS = E[exp(Tr(Adiag{z1, . . . zN}))] · E[exp(Tr(B diag{z1, . . . zN}))]
= E[exp(Tr(C diag{z1, . . . zN}))] = Eγ1,...,γN

E[exp(Tr(H diag{z1, . . . zN}))] = LHS

where H ∼ Orbit(γ1, . . . , γN ).

Remark 8.8. (∗∗) is also the definition of β-dependent (not just 1,2,4) operation addition.

Proof. (Proof for β = 2 of Theorem 8.6.) Set z1 = Nz, z2 = · · · = zN = 0 in Lemma 8.7. Take
logarithm, divide by N and let N go to ∞,∫ z

0

RµA⊞µB (u) du =

∫ z

0

RµA(u) du+

∫ z

0

RµB (u) du.

Take derivation and get the result.

How do you think about free convolution? Analogy with classical convolution µ1 ∗ µ2.

Definition 8.9. Classical Convolution

1. Take ξ1 to be µ1-distributed and ξ2 to be µ2-distributed, then µ1 ∗ µ2 is the distribution of
ξ1 + ξ2.

2. If µ1(x), µ2(x) are corresponding densities, then µ1 ∗ µ2(x) =
∫∞
−∞ µ1(y)µ2(x− y) dy.

3. ∫
xn(µ1 + µ2)(dx) =

n∑
k=1

(
n

k

)∫
xkµ1(dx)

∫
xn−kµ2(dx).

E[ξ1 + ξ2]n =

n∑
k=0

(
n

k

)
E[ξ1]kE[ξ2]n−k.

4.

log

∫
eitx(µ1+µ2)(dx) = log

∫
eitxµ1(dx)+log

∫
eitxµ2(dx) for all t in a small neighbourhood of 0.

E[eit(ξ
1+ξ2)] = E[eitξ

1

]E[eitξ
2

].

Definition 8.10. Free Convolution

1. ξ1 + ξ2 ≈ Our first definition of µA ⊞ µB as a limit of addition of independent matrices.

2. The second definition does not exist.
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3. A version of the third definition can be developed.

4. log(· · · ) = log(· · · ) + log(· · · ) ≈ RµA⊞µB = RµA = RµB .

Theorem 8.11. Define classical cumulants (Kn = Kclassical
n ) of a prob measure µ through (assuming

all moments exists)

log

∫
eitxµ(dx) = K1(it) +K2

(it)2

2
+K3

(it)3

3!
+ · · ·

Then

1. Kn is a polynomial in moments mn of µ

Kn = mn + (homogenuous polynomial in m1, . . . ,mn−1 of degree n, if deg(mp) = p).

2.
mn =

∑
π=(B1,...,Bl)

∏
B∈π

K|B|

where π is set partition of {1, . . . , n}.

3.
Kn(µ

1 ∗ µ2) = Kn(µ
1) +Kn(µ

2).

Example 8.12. For N (m,σ2), K1 = m,K2 = σ2,Kl = 0 (l ≥ 3)

log

∫
eitxµ(dx) = log

(
exp

(
itm− t2σ2

2

))
= itm− t2σ2

2
.

For λ · Poisson(γ)

log

∫
eitxµ(dx) = γ(eitx − 1),

implying that
KN = γλN .

Proof. (Sketch of proof of Theorem 8.11.) Obviously 2. ⇒ 1. 3. is the statement of Definition 1.9.4.
For 2.,

∑
n≥1

Kn

n!
zn = log

∑
j≥0

mj

j!
zj


Take

∂

∂z
:
∑
n≥1

Kn

(n− 1)!
zn−1 =

∑
j≥1

mj

(j−1)!z
j−1∑

j≥0
mj

j! z
j

.

Multiply by denominator, compare coefficient of zl, yields

ml+1

l!
=
Kl+1

l!
+

l∑
j=1

mj

j!

Kl+1−j

(l + 1− j)!
.

which is equivalent to 2. (Exercise!)
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Theorem 8.13 (Analogy for free convolution). Definr free cumulants Kn = Kfree
n of µ through

G−1
µ (z)− 1

z
= K1 +K2z +K3z

2 + · · ·

G(z) =

∞∑
k=1

mkz
−k−1 (existence of all mn is sufficed for existence of all Kn).

Then

1. Kn is a polynomial in moments mn of the form

Kn = mn + (homogenuous polynomial in m1, . . . ,mn−1 of degree n, if deg(mp) = p).

2.
mn =

∑
π=(B1,...,Bl)

∏
B∈π

K|B|

where π is non-crossing set partition of {1, . . . , n}.

3.
Kn(µ

1 ⊞ µ2) = Kn(µ
1) +Kn(µ

2).

Non-crossing set partitions:

Figure 9: Explanation of Non-crossing

Example 8.14. Semicircle law is the analogy of N (0, 1) and Marchenllo-Pastur law is the analogy
of Poisson distribution.

Proof. (Sketch of the proof of Theorem 8.13.) Obviously 2. ⇒ 1. 3. is the same as Theorem 8.6.
For 2.,

R(z) = K1 +K2z + · · · G(z) =
1

z
+
m1

z2
+ · · ·

(R(z) +
1

z
) ◦G(z) = z

R(G(z)) +
1

G(z)
= z 1 +G(z)P (G(z)) = zG(z)

1 +
∑
n≥1

(G(z))nKn =
∑
n≥0

mnz
−n

Evaluating the coefficient of z−n, we get

mn = Kn + · · · .

Corollary 8.15. Recall µ̃α from Lecture 7. For each n = 1, 2, . . . , µ̃α = ⊞nµ1, which means

Cutting corners = addition in large matrix limit.

Proof. Comparing with Thm 7.9, both sides have R-transform nRµ1(z).

Remark 8.16. Lecture notes on free probability by Roland Speicher is recommended.
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9 Mar 18th

9.1 Signal plus noise

Today we continue to discussing
A+B = C,

where here A has low rank as N → ∞ and B has i.i.d. matrix elements. There are many variants
in statistics literature, e.g.

• Self-adjoint version:

A =

K∑
i=1

αiviv
∗
i ,

and B is GβE.

• Rectangle version:

A =

K∑
i=1

αiviu
∗
i ,

and the elements of B are i.i.d. Gaussians.

Remark 9.1. I and II are like semicircle law and M-P law. We discuss I here.

Consider the case K = 1,

C = αvv∗ +

√
2

β
GβE.

A signal-noise setup requires us to recover α and v from C. In the setting of previous lecture, A ≈ 0
and we expect C obeys semicircle law.

Theorem 9.2 (Spiked Random Matrices). Let λ1 < λ2 < · · · < λN are N eigenvalues of

C =
√
Navv∗ +

√
2

β
GβE,

where ∥v∥ = 1 Then there exists acrit such that

1. If a > acrit = 1, then

lim
N→∞

λN√
N

= a+
1

a
> 2.

2. If a < acrit, then

lim
N→∞

λN√
N

= 2.

By the theorem, we can easily get

Corollary 9.3.

â =
1

2

(
λN√
N

+

√
λ2N
N

− 4

)
N→∞−→ a.

Remark 9.4. The corollary is only applicable if you see a spike.

Theorem 9.5 (Recover v). In the setting of Theorem 9.2. Let v̂ denote the eigenvector corresponding
to λN and let ϕ be the angle between v and v̂,

lim
N→∞

sinϕ =
1

a
∧ 1.
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Proof. Step 1 a, λN and ϕ are unchanged under orthogonal/unitary transformations of matrix C.
We do two transformations:

• Rotate v ti be the first basis vector (1, 0N−1).

• Rotate in the orthogonal complement of (1, 0N−1), so that the (N − 1) × (N − 1) bottom
random corner of GβE becomes diagonal, while the law of the first row and column of GβE
preserved.

Step 2 Now we brought C into

Ĉ =


aδN + N (0, 2

β ) ξ2 ξ3 . . . ξN
ξ̄2 µ2

ξ̄3 µ3

...
. . .

ξ̄N µN


and µ2, · · · , µN be the eigenvalues of

√
2
βGβE and ξ2, · · · , ξN

i.i.d∼
√

2
β corresponding Normal dis-

tribution. We find an eigenvector (x1, · · · , xN ) of C̃ with eigenvalues λ
x1

(
a
√
N + N

(
0, 2

β

))
+
∑N

i=1 ξixi = λx1

x1ξ̄2 + µ2x2 = λx2 ⇒ x2 = x1ξ̄2
λ−µ2

...

x1ξ̄N + µNxN = λxN ⇒ xN = x1ξ̄N
λ−µN

=⇒


x2 = ξ̄2

λ−µ2

...

xN = ξ̄N
λ−µN

Plug the 2 ∼ N equations into the first line and we get

x1

[
a
√
N + N

(
0,

2

β

)
− λ+

N∑
i=1

ξiξ̄i
λ− µi

]
= 0. (∗)

By interpolating of eigenvalues, C has 1 eigenvalue larger than µN . Only this eigenvalue has chance
to become larger than 2

√
N as µN√

N
→ 2. Denote y = λN√

N
and investigate (∗) for y > 2.

a+
N
(
0, 2

β

)
√
N

− y +
1

N

N∑
i=2

ξiξ̄i
y − µi√

N

= 0. (∗∗)

By LLN, we have

1

N

N∑
i=2

ξiξ̄i
y − µi√

N

≈ 1

N

N∑
i=2

1

y − µi√
N

→ G(y) =
1

2
(y −

√
y2 − 4).

Then we have

a− y +
1

2
(y −

√
y2 − 4) = 0 =⇒ y = a+

1

a
,

and this proves Theorem 9.2.
Step 3 For Theorem 9.5, we notice that the eigenvalues are

(1, 0, · · · , 0) and
(
1,

ξ̄2
λ− µ2

, · · · , ξ̄N
λ− µN

)
,
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and we have

cos2 ϕ =
1

1 +
∑N

i=2
ξiξ̄i

(λ−µi)2

→ 1

1 + 1
2

y√
y2−4

− 1
2

=
2
√
y2 − 4

y +
√
y2 − 4

.

As y = a+ 1
a , we have

sin2 ϕ→ 1

a2
.

Next, we discuss the fluctuation. Notice that without spike, the fluctuation of GβE is N−1/2 ·
N1/3 = N−1/6. In the spiked case the fluctuation is N−1/2 ·N1/2 = Const – much larger.

Theorem 9.6. Let λ1 < λ2 < · · · < λN are N eigenvalues of

C =
√
Navv∗ +

√
2

β
GβE,

where ∥v∥ = 1. Assuem a > 1, then

lim
N→∞

(
λN −

(
a+

1

a

)√
N

)
= N

(
0,

2

β

(
1− 1

a2

))
.

Proof.

a
√
N + N

(
0,

2

β

)
− λ+

∑ ξiξ̄i
λ− µi

= 0

Set λ =
√
N(a+ 1

a ) + ∆λ in the equation

0 = −
√
N

a
+ N

(
0,

2

β

)
−∆λ+

1√
N

N∑
i=2

ξiξ̄i

(a+ 1
a )−

µi√
N

− ∆λ√
N

= −
√
N

a
+ N

(
0,

2

β

)
−∆λ+

1√
N

N∑
i=2

ξiξ̄i

(a+ 1
a )−

µi√
N

− ∆λ

N

N∑
i=2

ξiξ̄i

((a+ 1
a )−

µi√
N
)2

+O(N− 1
2 )

ξiξ̄i
1

β
χ2
β ⇒ E[ξiξ̄i] = 1, Var(ξiξ̄i) =

1

β2
· 2β =

2

β

Applying CLT,

1√
N

N∑
i=2

1
βχ

2
β

(a+ 1
a )−

µi

N

=
√
NG

(
a+

1

a

)
+ N

(
0,

2

β

(
−G′

(
a+

1

a

)))
+O(N− 1

2 )

where

G

(
a+

1

a

)
=

1

a
, G′

(
a+

1

a

)
= − 1

a2 + 1

Thus we have

N

(
0,

2

β

)
+ N

(
0,

2

β

(
−G′

(
a+

1

a

)))
+∆λ

(
−1 +G′

(
a+

1

a

))
+O(N− 1

2 ) = 0

∆λ = N

(
0,

2

β

(
1− 1

a2

))
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Remark 9.7. In summary,

• for a < 1, λN has fluctuations N−1/6TWβ;

• for a > 1, λN has fluctuations N
(
0, 2

β

(
1− 1

a2

))
.

The change of behavior is called BBP phase transition.

Now we discuss what is happening exactly at a = 1. Let us derive some Heuristics for critical
scaling of a,

2
√
N +N−1/6TWβ =

(
a+

1

a

)√
N + N

(
0,

2

β

(
1− 1

a2

))
.

We get the right scale of a is a = 1 + θN−1/3. We have the theorem as follows.

Theorem 9.8. Assume a = 1+ θN−1/3, θ ∈ R. Let λN be the largest eigenvalue of C =
√
Navv∗+√

2
βGβE. Then

lim
N→∞

N1/6
(
λN − 2

√
N
)
= Fβ,θ.

Remark 9.9. Fβ,θ interpolates between Tracy-Widom distribution (θ = −∞) and Gaussian (θ =
+∞)

We do not prove it, but give several approaches instead.

• Deterministic Point Process for A+GUE at β = 2 (which will discussed in the next lecture).

• Tridiagonal matrices for arbitrary β > 0. This approach is restricted to K = 1 spike, because
tridiagonalization only works for K = 1.

At the last of this lecture, we talk about the multi-spiked case. We choose ai as eigenvalues and
vi as eigenvectors.

Theorem 9.10. Suppose a1 > a2 > · · · > aK > 1. Then for each i = 1, 2, · · · ,K, we have

lim
N→∞

(
λN−i+1 −

√
N

(
ai +

1

ai

))
= N

(
0,

2

β

(
1− 1

a2i

))
and

lim
N→∞

sinϕi =
1

ai
.

Remark 9.11. It should be independent over i, but haven’t found in any literature.

Proof. Similar to the case K = 1.

Now imagine that a1 = · · · = aK = a > 1,

C =
√
Na

K∑
i=1

viv
∗
i +

√
2

β
GβE.

Theorem 9.12. The asymptotics in this case becomes(
λN −

(
a+

1

a

)√
N, · · · , λN−K+1 −

(
a+

1

a

)√
N

)
→

√
2

β

(
1− 1

a2

)
GβE eigenvalues.

Remark 9.13. In practical, you see K spikes close to each other and then need to be careful with
interpreting eigenvectors.
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10 Api 1st

10.1 Dyson Browian Motion

The task is to add time to random matrices with motivation that

• Physical objects come with evolutions, so we want RW to become a part of some dynamics.

• When you add matrices C = A+B. Sum at n terms can become time.

• Connection to 2d stat mechanics and Markov chain.

• An important formula proving universality theorems for RW ensembles.

Consider the case N = 1. GOE/GUE/GSE with N (0, 1) random variable.
Consider Brownian motion B(t) started from B(0) = a, t ≥ 0

• B(s)−B(t) ∼ N (0, s− t).

• Continuous curve.

• Independent increments.

Matrix Brownian motion X(t) which is N × N matrix filled with i.i.d. Brownian motions:
B(t) + iB̃(t) for β = 2, where X(0) can be arbitrary deterministic. Set U(t) = 1

2 (X(t) +X∗(t))

Lemma 10.1. Set U(0) = A. Then U(t) has the law of A +
√
tGβE for a fixed t ≥ 0 (But

t−dependence is different!)

Proof. For β = 2,
X(t)−X(0)√

t
= matrix of i.i.d. N (0, 1) + iN (0, 1)

U(t) = U(0) +
√
t
1

2

(
X(t)−X(0)√

t
+
X∗(t)−X∗(0)√

t

)
= A+

√
tGβE

Theorem 10.2. Let λ(t) = (λ1(t) ≤ λ2(t) ≤ · · · ≤ λN (t)) be eigenvalues of U(t). Then (λ(t))t≥0 is
a Markov process.

(Given present, future and past are indep = all info about (λ(t))t≤T ) useful for predicting
(λ(T ))t>T is given by λ(T )

Remark 10.3. (λN , λN−1)(t) is also Markov, but (λN , λN−1, λN−2)(t) is not. λN is e.v. of N ×N
matrix, and λN−1 is for N − 1×N − 1 submatrix. Projection of a Markov rocess is rarely a arkov
Process

Proof. Study λ(s)S>T conditional on λ(t)t<T . Write U(t) = U(T ) + (U(t) − U(T )) (2 terms are
indep by def of BW)

Conjugate with orthogonal/unitary U to diagonalize U(T ).

UU(t)U∗ = diag(λ1(T ), . . . , λN (T )) + U(U(t)− U(T ))U∗

LHS leads to the same e.v. λ1(t), . . . λN (t). The second term in RHS is again a BM indep of
(λ(S))S≤T . So no dependence on λ(S)S<T remained.

How to describe an N−dim Markov process λ1(t) ≤ · · · ≤ λN (t)?

I By transition prob
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II As a solution to a Stochastic Differential equation

Start from II

Theorem 10.4. λ(t) solves an SDE

dλi(t) =
β

2

∑
j ̸=i

dt

λi(t)− λj(t)
+ dWi(t), 1 ≤ i ≤ N (∗)

where W1, . . .WN are indep Brownian motions. This solution is called Dyson Brownian Motion.

Remark 10.5. (∗) makes sense for all β > 0. β
2 represents the strength of repulsion, and it’s harder

to make sense for small β.

Sketch of the proof. Deal with β = 1. As in the previous thm

λ(T +∆t)∆t≥0 = e.v. [diag(λ1(t), . . . , λN (t)) +Matrix at time ∆t]

= e.v.


λ1(t) +B1(∆t)

1√
2
B12(∆t) · · · 1√

2
B1n(∆t)

1√
2
B12(∆t) λ2(t) +B2(∆t) · · · 1√

2
B2n(∆t)

· · · · · · · · · · · ·
1√
2
B1n(∆t)

1√
2
B2n(∆t) · · · λn(t) +Bn(∆t)


Assume λ = λi(t) + ∆λ is the eignevalue of U(t), we have

0 = det(U(t)) =

N∏
m=1

(λm(t)− λi(t) +Bm(∆t)−∆λ)

+
∑
j ̸=i

∏
m ̸=j,i

(λm(t)− λi(t) +Bm(∆t)−∆λ) ·
(
1

2
Bij(∆t)

)2

+ o(∆t)

=⇒ ∆λ = ∆t · 1
2

∑
j ̸=i

1

λi(t)− λj(t)
+Bi(∆t) +

1

2

∑
j ̸=i

B2
ij(∆t)−∆t

λi(t)− λj(t)
+ o(∆t).

In this matrix, N − 1 diagonal elements are of const order, and the rest is very small as ∆t→ 0.
We expect ∆λ ∼ O(∆t) Scaling ∆t→ 0, we get the desired SDE.
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Proposition 10.6. For each β > 0, the SDE (∗) has a (unique) solution, such that at each fixed
t > 0, (λ1(t), . . . , λN (t)) has distribution of density

∼
∏
i<j

|λi − λj |β · exp(− 1

2t

N∑
i=1

λ2i ) (∗∗)

where λ1(0) = · · · = λN (0) = 0

For β = 1, 2, 4, this follows from Lemma 10.1 and Theorem 10.4 For other β > 0, we need to

• make sense of SDE and its solutions.

• make a formal computation checking that the density (∗∗) is preserved under (∗).

E.g. in N = 1 case. dλ = dW (t) is a Markov process and you want to show that densities

ρ(t, λ) =
1√
2πt

exp(− 1

2t
λ2)

are preserved. For that you need a generator of a Markov process which is 1
2

∂2

∂λ2 .
Here, we need to check that

∂

∂t
p(t, λ) =

1

2

∂2

∂λ2
p(t, λ).

For β = 2, one can go much further.

Theorem 10.7. For β = 2, DBM has the following transition probabilities

P (λ(t) = x | λ(0) = a) = N !

(
1√
2πt

)N ∏
i<j

xi − xj
ai − aj

det

[
exp

(
− (xi − aj)

2

2t

)]N
i,j=1

Proof. λ(t) are e.v. of X = A+
√
tGUE. The law of X has density∼ exp(−Tr(X−A)2

2t )
A is deterministic, however, for any unitary U , UAU∗ will lead to the same e.v. of A and X.

Hence, the density ∫
U∈U(λ)

exp

(
−Tr(X − UAU∗)2

2t

)
dU

=

∫
U

exp

(
−TrX2

2t
+

Tr(XUAU∗)

t
− Tr(UAU∗)2

2t

)
dU

Integral over U is now HCTZ formula from Theorem 6.18. Hence, the density of X is

∼ exp

(
−
∑
x2i

2t
−
∑
a2i

2t

)
· det

[
exp

(xiaj
t

)]∏
i<j

1

(xi − xj)(ai − aj)

To get the density of its eigenvalues, we use the Jacobian from Lecture 1 and need to multiply
with

∏
i<j(xi − xj)

2.

Theorem 10.8. Let x1, . . . , xN be coordinates at time t for β = 2 DBM started at (a1, . . . , aN ) at
time t = 0. Then {xi} form a determinental pt process with kernel

K(x, y) =
1

(2πi)2t

{ exp(w
2−2yw
2t )

exp( z
2−2xz
2t )

N∏
i=1

w − ai
z − ai

dw dz

w − z
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Remark 10.9. • If a1 = · · · = aN = 0 and t = 1, we reproduce the correlation functions in
Lecture 5.

• Can be used for study of BBP phase transition for β = 2 by setting (a1, · · · , aN ) = (
√
Nα1, · · · ,

√
NαK , 0

N−K).

• University of RM statistics (next lecture).

Lemma 10.10. The density of (x1, . . . , xN ) can be expressed as

lim
s→∞

(
1

z
det[Pt(ai → xj)]

N
i,j=1 det[Pt(xj → K − 1)]Nj,K=1

)
where Pt(x→ y) is the transition prob of BM 1√

2πt
exp(− (x−y)2

2t )

Proof. We match with Theorem 10.8 by computing the 2nd det under the limit. (1st one is already
there)

det

[
exp

(
−
x2j
2s

− xj(K − 1)

s
− (K − 1)2

2s

)]N
j,K=1

∼ exp

(
−
∑
x2j

2s

)
det

[
exp

(
xj(K − 1)

s

)]
= exp

(
−
∑
x2j

2s

)∏
i<j

(
e

xi
s − e

xj
s

)
∼
∏

(xi − xj) as s→ ∞

Proof sketch of Theorem 10.8. Using the result of Biorthogonal ensemble, we can get

K(x, y) = lim
s→∞

N∑
i,k=1

Pt(ai → x)Ps(x→ k − 1)[G−⊤]ik.

Theorem 10.11. For β = 2, DBM, λ(t), started from λ(0) = (a1, · · · , aN ), coincides in law with
N independent BM started from λ(0) = (a1, · · · , aN ) and condition on never intersect.

Remark 10.12. Two independent BM started from arbitrary a1 ≤ a2 almost surely intersect.

Definition 10.13. Choose a1 < · · · aN . For each T > 0, let λT (t) be BM conditioned on no
intersections until time T and Bi(T ) = i− 1.

Lemma 10.14. λT is a Markov process with translation density

P(λ(t+∆t) = x | λ(t) = y) =
det[P∆t(y → x)] det[PT−t−∆t(x→ (0, 1, · · · , N − 1))]

det[PT−t(y → (0, 1, · · · , N − 1))]
.
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11 Apr 8th

11.1 Universality

Definition 11.1. Hermitioan i.i.d. Wigner W = (wij) is a N ×N complex Hermitian matrix, such
that Rewij , Imwij , i < j and wii are indep with

Rewij i.i.d. E[Rewij ] = 0 E[Rewij ]
2 =

1

2

Imwij i.i.d. E[Imwij ] = 0 E[Imwij ]
2 =

1

2

wii i.i.d. E[wij ] = 0 E[wij ]
2 = σ2

We address 3 regimes for GUE

• Global: semicircle law

• Bulk limits: local lim by sine process

• Edge lim: Airy/TW lim

Under mild restrictions all 3 extend to general Wigner matrices. However our methods, based
on DPP fail. Tnstead we use comparison methods. Treat general Wigner case as a deformation of
GUE case and argue that nothing changes. (GUE is still improtant)

3 approaches

• Lindeberg swapping method

• Moment’s method

• Dyson BM

Theorem 11.2 (universality of semicircle). Hermitian Wigner matrix W , the empirical dist of the
e.v. satisfies

lim
N→∞

1

N

N∑
i=1

δ λi√
N

= semicircle law of density
1

2π

√
4− x2

We only prove a weaker result

Proposition 11.3. Assume ∃ E|wij |2 <∞,E|wii|3 <∞. Then

E

[∫
1

z − x

(
1

N

N∑
i=1

δ λi√
N

)]
= E[GN (z)] = E

[
1

N

N∑
i=1

1

z − λi√
N

]
N→∞−−−−→

∫
1

z − x

(
1

2π

√
4− x2

)
=

1

2
(z −

√
z2 − 4) = G(z)

As we saw in Lecture 2,
∫

1
z−xµ(dx) uniquely determines µ. Hence, this fixes semicircle. For

Theorem 11.2, we additionally need Var( 1
N

∑N
i=1

1

z− λi√
N

) → 0 for concentration.

Strategy: For W = GUE, i.e. Gaussian Wij , we already know this from Lecture 2, we replace
matrix elements one by one from GUE to Wij , control the change of E[GN (z)] and show that after
all steps, the total change is O(N−1/2). Hence, GUE limit = general Wigner limit.

History: Approach intended by Lindeberg in order to prove CLT. It is trivial, because 1√
N

∑N
i=1 ξi ∼

N (0, 1). Then replace N (0, 1) to desired distribution one by one for each ξi.
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Implementation: Introduce resolvent of A

rA(z) =
1

A− z · Id
Note that

GN (z) = − 1

N
Tr r W√

N
(z)

Lemma 11.4 (Resolvent identity).

rB(z) = rA(z) + rA(z) + (A−B)rB(z)

rB(z) = rA(z) +

m∑
k=1

(rA(z)(A−B))krA(z) + (rA(z)(A−B))k+1rB(z)

Proof. We need
1

B − Z
=

1

A− Z
+

1

A− Z
(A−B)

1

B − Z

which is obviouslu correct. 2nd is the iteration of the 1st.

Proof of Prop. Only prove for off-diagonal elemets. Start with GUE, replace matrix elements by wij

in order (left to right and up to down).
Define M ij : Hermitian matrix in which all elements up to (i, j) were replaced by

wij√
N
; (i, j), (j, i)

elements are 0; and all elements after (i, j) are
gij√
N

(gij is elements of GUE). Similarly, define Aij

except at (i, j) → gij√
N
, and at (j, i) → wij√

N
.

We need ∑
i≤j

E
[
1

N
Tr (rAij (z)− rBij (z))

]
= O

(
1√
N

)
for all z with Im z ̸= 0

Equivalently,∑
i≤j

E [Tr (rAij (z)− rBij (z))] = O
(
N− 3

2

)
for all z with Im z ̸= 0

We get rid of i, j, z in the notation and write

rA = rM + rM (M −A)rM + rM (M −A)rM (M −A)rM + [rM (M −A)]3rA

rB = rM + rM (M −B)rM + rM (M −B)rM (M −B)rM + [rM (M −B)]3rB

E[rA − rB ] = 0 + 0 + 0 + E
[
][rM (M −A)]3rA

]
− E

[
][rM (M −B)]3rB

]
.

So we only need

ETr
[
[rM (M −A)]3rA − [rM (M −B)]3rB

]
= O

(
N− 3

2

)
Lemma 11.5. Let Y be a matrix of rank 1 or 2, then

|TrY | ≤ 2||Y || = 2
√
λmax(Y Y ∗)

Proof. Decomposition
Y = UDV 0 ≤ d1 ≤ d2 = ||Y ||

|TrY | = |
∑
i

(ui1d1v1i + ui2d2v2i)| ≤ |d1|+ |d2| ≤ 2||Y ||
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We use the lemma and note

||rM || ≤ 1

| Im z|

because rM is a normal operator with e.v. 1
z−x for real x. Hence we have

||[rM (M −A)]3rA|| ≤
1

| Im z|4
||M −A||3 = O

(
N− 3

2

)
For diagonal elements replacement, gii√

N
→ wii√

N
, in E[rA − rB ], the 3rd term is not 0. But it is

small enough, so that because there are only N diagonal elements, the overall bound still works.

How far can this go?

• We can move from EGN (z) to the dist of GN (z) by computing E[f(GN (z))]: GN (z) changes
just a little bit, hence for smooth f , by Taylor expansion f(GN (z)) also change just a little
bit.

• you can take z approaching real axis as N → ∞. This eventually gives access to local statistics.
But need to match more moment to GUE.

Next we come to spikes.

Theorem 11.6 (Bai-Yin theorem). Assume E|wij |4 <∞ and let N ×N Hermitian Wigner matrix
W . Then

lim
N→∞

λN√
N

= 2 in prob and a.s.

It is known that if the 4th moment is infinite, then

lim sup
N→∞

(
λN√
N

)
> 2 a.s.

Sketch of the proof. Assume that wij are bounded, |wij | < c a.s. Claim that suppose K = K(N)
grows with N , then

ETr

(
WN

2
√
N

)K

=

{
2
√
2N√
π
K− 3

2 (1 + o(1)) , even k;

small order , odd k;

The claim remains true as long as K = o(N
2
3 ), but complexity of the proof grows as K becomes

larger.
For even K,

ETr

(
WN

2
√
N

)K

= E
N∑
i=1

(
λi

2
√
N

)K

≥ P
(

λN

2
√
N

≥ 1 + ϵ

)
(1 + ϵ)K .

So, ifK = Nδ with δ > 0, then the equation implies P
(

λN

2
√
N

≥ 1 + ϵ
)
→ 0.

∑
N P

(
λN

2
√
N

≥ 1 + ϵ
)
<

∞ =⇒ the a.s. convergence.
For the proof of the claim, we use moments

ETr(wN )K =
∑

i1,...,iK

EWi1,i2Wi2,i3 · · ·WiKi1 (∗∗)

Key obsevation: If Wij is present in the product, but there is no other wij/wji, then E = 0
because Ewij = 0 and indep.

Moreover, E(wij)
2 = 0 as well. Getting twice of the same wij also gives the E = 0.
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Lemma 11.7. For the leading contribution to the same (∗∗), we only need to consider i1, . . . , iK
s.t.

• wii is not present.

• For each wij, there is a single matching wji and usen additional appearance of wij or wji.

Lemma 11.7 is a hard part, whose complexity grows with K. And we omit it. The terms of
Lemma 11.7 can be encoded by trees.

Indices on the same vertex coincide:

E[Wi1i2Wi2i3 · · ·WiN i1 ] = 1.

It remains to count the trees: N
K
2 +1 planar rooted trees on K

2 + 1 vertices = N
K
2 +1 1

K
2 +1

(
K
K
2

)
. Hence

ETr(WN )K = N
K
2 +1 4

K
2

(K2 )
3/2

√
π
(1 + o(1)).

Remark 11.8. • Under the same conditions as Theorem 11.6 in fact

N−1/6(λN − 2
√
N) → TW2 as N → ∞.

• Under additional assumptions (e.g. |wij | < C), one can prove TW2 limit by high moments

Tr(WN )K ,K = τN2/3.

In the bulk, we do not even need the 4th moment.

Theorem 11.9. Suppose that E|wij |2+δ < ∞ for some δ > 0. Let λ1 ≤ · · · ≤ λN be eigenvalues of
matrix WN take −2 ≤ s ≤ 2. Then{√

N(λi − s
√
N)
}
→ sine process of intensity

1

2π

√
4− s2.

Remark 11.10. • E|wij |2+δ is believed not to be necessary, E|wij |2 should be sufficient.

• E|wij | <∞ is in fact sufficient if we change the scaling.

• Even E|wij |δ <∞ is sufficient in a part of the spectrum.
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Proof. We prove Gaussian divisible case.

Wij = Vij +
√
tgij .

We assume E|Vij |4 <∞, so that we can use Theorem 11.6. We need E|Vij |2 = 1− t for E|Wij |2 = 1
and t can be arbitrary small.

Note W = V +
√
tGUE, V has eigenvalues (a1, · · · , aN ). Recall Theorem 10.8

Theorem 11.11. Let x1, . . . , xN be coordinates at time t for β = 2 DBM started at (a1, . . . , aN ) at
time t = 0. Then {xi} form a determinental pt process with kernel

K(x, y) =
1

(2πi)2t

{ exp(w
2−2yw
2t )

exp( z
2−2xz
2t )

N∏
i=1

w − ai
z − ai

dw dz

w − z

Eigenvalues of WN form a DPP with an increasing kernel, conditioning on (a1, · · · , aN ) = e.v.
of V .
Strategy: Analyze conditionally on (ai), hope that only limits of (ai) which we know enter into the
answers.
Steepest descent: Let

x→
√
Ns+

∆x√
N

y →
√
Ns+

∆y√
N

w →
√
Nw

z →
√
Nz

and the kernel becomes

K(x, y) =

√
N

(2πi)2z

{ exp(N(w
2

2t − 2sw
2t + 1

N

∑
i log(w − ai√

N
)))

exp(N( z
2

2t −
2sz
2t + 1

N

∑
i log(z −

ai√
N
)))

· ∆yz −∆xw

t

dw dz

w − z
.

We investigate

F (w) =
w2

2t
− 2sw

2t
+

1

N

∑
i

log

(
w − ai√

N

)
.

By the semisircle law,

0 = F ′(w) =
w

t
− s

t
+

1

N

∑
i

1

w − ai√
N

≈ w

t
− s

t
+

1

2(1− t)

(
w −

√
w2 − 4(1− t)

)
.

=⇒ wc =
s(2− t)± t

√
s2 − 4

2
.

When |s| < 2, there are two complex conjugate critical points. Deform the contours to pass through
them. Similar analysis... (Additional step to be careful about: (ai)-dependent steepest descent
contours).

Remark 11.12. Further developments using DBM methods:

• Make t smaller and smaller (until it is so small and Gaussian divisibility condition no longer
needed).

• Develop alternative analysis of DBM not using DPP (and so extending beyond β = 2).

56



12 Apr 15th

12.1 CLT and GFF

Recall Semicircle Law: λ1 ≤ · · · ≤ λN are eigenvalues of
√

2
βGβE.

Theorem 12.1. Let f be analytic in a small neighboring of [−2, 2]. Let λ1 ≤ · · · ≤ λN be e.v. of√
2
βGβE, β > 0. Then

N∑
i=1

f

(
λi√
N

)
−N

∫
f(x)

1

2π

√
4− x2

converges to dist to a Gaussian r.v. ξf jointly other several f = f1, . . . , fK with

E[ξf ] =
(
2

β
− 1

)
m(f), Cov(ξf , ξg) =

2

β
C(f, g)

m(f) =
1

4
(f(2) + f(−2))− 1

2π

∫ 2

−2

f(x)√
4− x2

dx

C(f, g) =
1

4π

∫ 2

−2

∫ 2

−2

(f(x)− f(y))(g(x)− g(y))

(x− y)2
4− xy

√
4− x2

√
4− y2

dxdy.

or

C

(
1

z − x
,

1

w − x

)
= − 1

2(z − w)2

(
1− zw − 4√

z2 − 4
√
w2 − 4

)
for z, w out of [−2, 2]

where m(f) and C(f, g) do not depend on β.

• In contrast to edge, β-dependence is simple.

• Gaussian limits, no new distributions.

• m(f), C(f, g) → research direction.

• For other ensembles, similar β-dependence, we can give similar m(f) and C(f, g).

• Optimal results: for all f with C(f, f) < ∞ is enough. But for f(x) = Ix<0, the scaling is
wrong, Var(

∑
i f(

λi√
N
)) grows logarithmically.

Proof. The main idea is fancy moments method.
Question: Let η1, . . . , ηm be jointly Gaussian r.v. with E[ηi] = 0 and E[ηiηj ] = σij , then what is

E[η1 · · · ηm]?

Lemma 12.2 (Wick’s formula).

E[η1, . . . , ηm] =
∑

perfectmatchings

∏
(i,j)∈mathching

σij

Proof. By Laplacian’s transform

E[et1η1+···+tmηm ] = exp

1

2

m∑
i,j=1

titjσij

 .
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Hence, we take derivative and get the expectation

E[η1 · · · ηm] =
∂m

∂t1 · · · ∂tm

exp
1

2

m∑
i,j=1

titjσij

 ∣∣∣∣
t1=···=tm=0

.

Equivalently, this is the coefficient of t1 · · · tm in Taylor’s expansion.

=
∑
ij

2−
m
2

∏
ij

σij .

Notice that each perfect match appears 2
m
2 times, we prove the Lemma 12.2

Takeaway: Moments can be reconstructed by applying a differential operator to Laplace trans-
form.

We do the same for GUE.

Lemma 12.3. Introduce an operator

Da =
∏
i,j

(zi − zj)
−1

(
N∑
i=1

Ta,i

)∏
i,j

(zi − zj)

Ta,if(z1, . . . , zN ) = f(z1, . . . , zi−1, zi + a, zi+1, . . . , zN )

Then for λ1, · · · , λN eigenvalues of GUE, we have

E
M∏
k=1

[
N∑
i=1

eakλi

]
︸ ︷︷ ︸

Moments of linear statistic for f(λ) = eaλ

= Dam
· · ·Da1︸ ︷︷ ︸

They all commute

exp

(
N∑
i=1

z2i
2

)∣∣∣∣
z1=···=zN=0

.

Proof. From Lecture 6,

E exp(Tr(GUE · Z)) = EBλ1,...,λN
(z1, . . . , zN ) = exp

(
N∑
i=1

λ2i
2

)

where Z = diag(z1, . . . , zN ) and λ1, . . . , λN denote the e.v. of GUE.
Then act with D

Bλ1,...,λN
(z1, . . . , zN ) =

N∏
K=1

(K!) · det[exp(λizj)]∏
i,j(λi − λj)(zi − zj)

.

D =
∏
i,j

(zi − zj)
−1

(
N∑
i=1

Ta,i

)∏
i,j

(zi − zj).

So B is eigenfunction of D with eigenvalue
∑N

i=1 exp(aλi). Hence,

E

[
m∏

k=1

(
N∑
i=1

eakλi

)]
Bλ1···λN

(z1, · · · , zN ) = Dam
· · ·Da1

exp

(
N∑
i=1

λ2i
2

)
.

Plug z1, . . . , zN = 0 and notice B(0, · · · , 0) = 1.
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Lemma 12.4.

Df(z1) · · · f(zN ) = f(z1) · · · f(zN )
a−1

2πi

∮
{z1,...,zN}

 N∏
j=1

v + a− zj
v − zj

 f(v + a)

f(v)

The contour encloses z1, . . . , zN with no singularities of f .

Proof.

Df(z1) · · · f(zN ) =

N∑
i=1

∏
j ̸=i

zi + a− zj
zi − zj

 f(zi + a)

f(zi)
· f(z1) · · · f(zN )

=
a−1

2πi

∮
{z1,...,zN}

N∏
i=1

v + a− zj
v − zj

· f(v + a)

f(v)
dvf(z1) · · · f(zN )

Corollary 12.5.

E

[
m∏

K=1

N∑
i=1

eaKλi

]
=
(a1 · · · am)−1

(2πi)m

∮ m∑
k=1

[
(vk + ak)

N

vNk
exp

(
a2k
2

+ akvk

)]
∏
k<l

vk − vl + ak − al
vk − vl − al

· vk − vl
vk − vl + ak

dv1 · · · dvk.

Proof. We compute Dam
· · ·Da1

exp(
z2
i

2 ) · · · exp( z
2
N

2 ). By sequentially applying Lemma 12.4 and then
setting z1 = · · · = zN = 0 at the end

Now we prove Theorem 1 for β = 2, f( λ√
N
) = exp(a · λ√

N
)

Step 1: Expectation. By Cor with m = 1

E
[∑

exp

(
a · λi√

N

)]
=

( a√
n
)−1

2πi

∮
{0}

(
v + a√

N

v

)N

exp

(
a2

2N
+

a√
N
v

)
dv

No steepest descent needed. Set v = u
√
N to get

N

a

1

2πi

∮
exp

(
N log

(
1 +

a

Nu

)
+ au+

2a2

N

)
=
N

a

1

2πi

∮
exp

(
a

(
u+

1

u

)
+

a2

2N

(
1− 1

u2

)
+O(N−2)

)
du

=
N

a

1

2πi

∮
exp

(
a

(
u+

1

u

))
du+

a

4πi

∮
exp

(
a

(
u+

1

u

))(
1− 1

u2

)
du+O(N−1).

We only need to prove

N

a

1

2πi

∮
exp

(
a

(
u+

1

u

))
du = N

∫ 2

−2

exp(ax)
1

2π

√
4− x2 dx.
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We transform the contour to the unit circle and change variables x = u + 1
u (u = 1

2 (x ±
i
√
4− x2),du = 1

2 (1± i −x√
4−x2

) dx)

a−1

2πi

∮
exp

(
a

(
u+

1

u

))
du =

a−1

2πi

(∫ 2

−2

eax
1

2
(1 + i

−x√
4− x2

) dx+

∫ 2

−2

eax
1

2
(1− i

−x√
4− x2

) dx

)
=
a−1

2π

∫ 2

−2

eax
x√

4− x2
dx

by parts
=

a−1

2π

∫ 2

−2

(aeax)
√

4− x2 dx

Conclusion:

E

[
N∑
i=1

exp

(
a
λi√
N

)]
= N

∫ 2

−2

eax
1

2π

√
4− x2 dx+O

(
N−1

)
Step 2: Variance.

E

[
N∑
i=1

exp

(
a1

λi√
N

) N∑
i=1

exp

(
a2

λi√
N

)]
− E

[
N∑
i=1

exp

(
a1

λi√
N

)]
E

[
N∑
i=1

exp

(
a2

λi√
N

)]

=N
(a1a2)

−1

(2πi)2

{ 2∏
k=1

(
vk + ak√

N

vk

)N

exp

(
a2k
2N

+
akvk
N

)
·

[
v1 − v2 +

a1√
N

− a2√
N

(v1 − v2 − a2√
N
)(v1 − v2 +

a1√
N
)
− 1

]
dv1 dv2.

≈N2 (a1a2)
−1

2πi2

{
exp

(
a1

(
v1 +

1

v1

)
+ a2

(
v2 +

1

v2

))[
1 + a1−a2

N(u1−u2)

(1− a2

N(u1−u2)
)(1 + a1

N(u1−u2)
)

]
du1 du2.

=N2 (a1a2)
−1

(2πi)2

{
exp

(
a1

(
v1 +

1

v1

)
+ a2

(
v2 +

1

v2

))[
a1a2

N2(u1 − u2)2

]
du1 du2.

Conclusion: Variance → 1
(2πi)2

v
exp

(
a1

(
v1 +

1
v1

)
+ a2

(
v2 +

1
v2

))
du1 du2

(u1−u2)2
.

Match this with formula in Theorem 1. Hint: Either directly with the 1st formula for C(f, g), or

N∑
i=1

f(λi) =
1

2πi

∮
around all λi

f(z)

N∑
i=1

1

z − λi
dz

and use it to compute with C( 1
z−x ,

1
w−x ) in Theorems.

Step 3: Gaussianity. We need to show that

E

[
m∏

k=1

(
N∑
i=1

exp

(
ak

λi√
N

)
− E

N∑
i=1

exp

(
ak

λi√
N

))]
→ expressions of the Wick’s formula in Lemma 12.2.

All of them have exactly the same
∏m

k=1 part, but cross term part
∏

k<l varies. As in Steps 1,2, we

change variables uk =
√
Nvk and use

crossterm = 1 +
akal

N2(uk − ul)2
+O

(
N−3

)
The summation over 2m integrals leads to cancellation at parts involving 1. The next term → perfect
matching.

So far

• Var(
∑
f( λi√

N
)) = o(1)

•
∑
f( λi√

N
)−asymptotically Gaussian
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• Cov(
∑
f( λi√

N
,
∑
g( λi√

N
))) = one of three complicated formulas.

There exist a ”formula-less” point of view of (3). Consider GβE-corners process λKi (1 ≤ i ≤ K)
= eigenvalues of K ×K corners. Introduce Height function

H(x,K) =

K∑
i=1

I(λKi < x) = # {eigenvalues of K ×K corner which are < λ} .

• H(x,K) is a random function or a random surface.

• As a linear statistic with non-smooth f , it should be more singular.

• Any other linear statistic is obtained by integration by parts:

−
∫ ∞

−∞
f ′(x)H(x,N) dx = −

∫
f ′(x)

∑
I(λNi < x) dx

=

∫ ∞

−∞
f(x)(

∑
I(λNi < x))′ dx =

N∑
i=1

f(λNi ).
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The 2D random field appearing in the pictures has a name ”the Gaussian Free Field” or GFF.

Definition 12.6. The GFF with Dirichlet boundary condition in the upper half plane H = {z ∈
C| Im z ≥ 0} is a (generalized) Gaussian random field f̄ on H with covariance given by

E(f̄(z)f̄(w)) =
1

2π
ln

∣∣∣∣z − w

z − w̄

∣∣∣∣
• Usually, gaussian field is a random function F : H → R, s.t. F (z1), . . . ,F (zn) are Gaussian
covariance (∆).

• Then E|f(z)|2 = +∞ → reflected by sharp peaks on pictures.
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• Generalized means that we should not look at individual values, but instead consider pairings
with test-measures

⟨F , µ⟩ ≈ heuristically
x

F dµ.

Formally, ⟨F , µ⟩ =mean 0 Gaussian r.v. with cov given by

E⟨F , µ⟩⟨F , ν⟩ =
x

H

− 1

2π
ln

∣∣∣∣z − w

z − w̄

∣∣∣∣µ(dz)ν(dw).
Example: If z = x+ iy, µ(dz) = µ(z) dx dy, then

⟨F, µ⟩ =
x

H

F (z)µ(z) dz.

The covariance − 1
2π ln

∣∣∣ z−w
z−w̄

∣∣∣ = C(z, w) satisfies

1. If z or w are real, C(z, w) = 0 (Dirichlet boundary condition)

2. z = x+ iy (
∂2

∂x2
+

∂2

∂y2

)
C(z, w) = −δ(z = w)

(δ function in functional analysis sense) This is Green’s functions for the Laplace operator

∆ = ∂2

∂x2 + ∂2

∂y2 with Dirichlet boundary conditions.

3. F is conformally invariant: If we change the variables z → z′ = a+bz
c+dz , a, b, c, d ∈ R, preserving

H. It’s called Mobius transformation, then C(z, w) is unchanged.

4. F is a 2d analogue Brownian bridge.

Our GFF lives in H, but e.v. live inside a parabola. Because the support of semicircle law is
[−2

√
K, 2

√
K].

Definition 12.7. We introduce a bijection Ω : (interior of parabola) → H

Theorem 12.8. Let H(x, k), k = 1, 2, · · · be random height function of GβE corners process. Then,
as N → ∞√

β

2
π

[
H

(
x

√
βN

2
, yN

)
− E

[
H

(
x

√
βN

2
, yN

)]]
→ Ω− pullback of GFF in H

Remark 12.9. Full proof can be found in General β-Jacobi Corners Process and the Gaussian Free Field.
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13 Apr 22rd

13.1 Random matrices and 2d statistical mechanics

Discrete eigenvalue models of random matrices naturally correspond to two-dimensional statistical
mechanics models, such as lozenge tilings.

Figure 10: Lozenge Tilings

Motivation:

• Simplest model of stepped surfaces.

• Connects to other stat mech models like 3d Ising model, six vertex model, but tilings are
simpler to study.

• Extremely interesting asymptotic.

Theorem 13.1. Consider 2A × 2A × 2A hexagon. For N ≤ 2A, consider a vertical section at
distance N from the left. Then, there are N horizontal lozenges on the line at positions y ∈ {−A−
N
2 , · · · , A+ N

2 − 1
2} and their distribution has weight:

1

Z

∏
i<j

(yi − yj)
2

N∏
i=1

(3A− N
2 − 1

2 − yi)!(3A− N
2 − 1

2 + yi)!

(A+ N
2 − 1

2 − yi)!(A+ N
2 − 1

2 + yi)!

Remark 13.2. Like GUE-eigenvalues, but:

• yi ∈ Z or Z+ 1
2 .

• More complicated weight than e−
x2

2 .

Proof. By some combination analysis, we get there are exact N horizontal lozenges.
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By the definition of the Wikipedia page on Schur polynomials, we have

The left part of numerator = Sλ(1, · · · , 1) =
∏
i<j

[
(λj − j)− (λi − i)

j − i

]
=
∏
i<j

[
yj − yi
j − i

]
.

The first equal sign comes from properties of Schur polynomials, and the second one comes from
{λi − i}Ni=1 = {yi − N

2 }
N
i=1.

Similarly, we can complete the right part of nominator into a trapezoid and get

The right part of numerator =
∏
i<j

[
xj − xi
j − i

]
,

where {xi} = {−3A− N
2 + 1

2 , · · · ,−A− N
2 − 1

2} ∪ {A+ N
2 + 1

2 , · · · , 3A+ N
2 − 1

2} ∪ {yi}.
Combine them together, we get the result.

Theorem 13.3. Assume N is fixed, A→ ∞. Then yi√
3
4A

→ GUE - eigenvalues.

Corollary 13.4. The left corner of the graph corresponds to the Guassian corner process.

Proof of Theorem 1.3. Analyse the factorial from thm 1, using Stirling formula (K! =
√
2πK

(
K
e

)K
)

Notice that

(M − y)!(M + y)! ≈ 2πMe−2M exp((M − y) ln(M − y) + (M + y) ln(M + y))

(M − y) ln(M − y) + (M + y) ln(M + y) = 2M lnM +
y2

M
+O

(
y3

M2

)
so the weight becomes

w(y) = C · exp
(
y2

3A
− y2

A
+ o(1)

)
= C · exp

(
−y

2

2
· 4

3A

)
Therefore,

Prob(y1, . . . , yN ) = C ·
∏
i<j

 yi√
3
4A

− yj√
3
4A

2
N∏
i=1

exp

−1

2

 yi√
3
4A

2

+ o(1)


which is the GUE density.

Theorem 13.5. Keep track of the non-red Lozenge as y1(t) < y2(t) < · · · < yN (t), then for any
γ < 1,

lim
A→∞

(
yi(tA

γ)

A
γ
2

)N

i=1

= [β = 2] Dyson Brownian Motion (t).

Sketch of the proof. By CLT, N non-intersecting random walks → N non-intersecting Brownian
Motions.
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Theorem 13.6. Consider uniformly random tilings of 2A × 2A × 2A hexagon. Then as A → ∞,
inside the inscribed circle one sees all 3 types of lozenges, but outside, the configuration is ”frozen”,
i.e. in each of 6 zones we see only 1 type of lozenges.

Sketch of the proof. Let yi be horizontal lozenges on N−th vertical. Assume N
A → x, as A → ∞

and study

lim
A→∞

1

A

N∑
i=1

δyi/A = µx.

Notice that µx is not a probability measure for the total mass is x. We will not prove that the limit
exists, but assuming that we find what µx should be.

Proposition 13.7 (Nekrasov Equation; discrete loop equation, discrete Schinger-Dyson equation).
Take a prob measure on N -tuples of integers L ≤ y1 < y2 < · · · < yN ≤ R of the form

Prob(y1, . . . , yN ) =
1

Z

∏
i<j

(yi − yj)
2

N∏
i=1

w(yi)

with

• w(L− 1) = w(R+ 1) = 0

• w(y)
w(y−1) =

φ+(y)
φ−(y) where φ±(y) are holomorphic in a nbhd of [L,R].

Then

R(z) = φ−(z)E
N∏
i=1

[
1− 1

z − yi

]
+ φ+(z)E

N∏
i=1

[
1 +

1

z − yi − 1

]
is also holomorphic in the same nbhd of [L,R].

Proof. Examine the possible simple pole at z = h by computing its residence

−φ−(h)

N∑
i=1

∏
j ̸=i

[
1− 1

h− yj

]
Prob(yj = h) + φ+(h)

N∑
i=1

∏
j ̸=i

[
1 +

1

h− yj − 1

]
Prob(yj = h− 1)

?
= 0

Fix i, take 2 configurations y+ and y− s.t. y+i = h, y−i = h−1 and are the same otherwise. They
enter in the both sums

φ−(h)
∏[

1− 1
h−yj

]
Prob(y+i )

φ+(h)
∏[

1 + 1
h−yj−1

]
Prob(y−i )

=
φ−(h)

φ+(h)

∏
j ̸=i

[
h− yj − 1

h− yj

]2∏
j ̸=i

[
h− yj

h− 1− yj

]2
· w(h)

w(h− 1)
= 1

Hence, the terms cancel out.
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Returning to the proof of the theorem, we first verify the two conditions stated in Proposition
13.7. We then observe that the R-function converges to a quadratic function, allowing us to explicitly
identify its coefficients. Finally, we apply the Stieltjes inversion formula to determine the limiting
distribution.

Remark 13.8. A general question is how the discrete frozen boundary approximates the circle?

Theorem 13.9.
Discrete frozen - circle

cA1/3

A→∞→ TW2 .

Proof. Using DPP, where double contour integrals can be found in and orthogonal polynomials can
be found in

Further reading.
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14 Apr 29th

14.1 Random growth Models

Today we talk about Ulam’s problem. Consider a uniformly random permutation of {1, . . . , n},
define the increasing subsequences, as the name means. And denote ln to be the length of the
largest increasing subsequence. So the question is how does ln grow as n→ ∞?

The history: Ulan simulates by Monte Carlo and find ln ≥ c
√
n. Later in 1972, Hammersley

proved that ln ∼ c
√
n. Then Vershik-Kerov / Logan-Shepp proved ln ∼ 2

√
n in 1976. And Baik-

Deitt-Johansson proved
ln = 2

√
n+ n1/6 TW2 +o(n

1/6).

Now we add a second dimension, and we consider point process in the quadrant:

1. P(K points in set A) = exp(−area(A))[area(A)]K/K!

2. For disjoint A1, · · · , Am, their particle counts are independent.

Proposition 14.1. Let L(x, t) = maximal number of points on monotone up-path (angles between
−π

4 and π
4 ) from (0, 0) to (t, x).

Then L(x, t)
d
= lρ, where ρ ∼ Poisson

(
t2−x2

2

)
(sample n = ρ, and then sample ln).

Proof. How many points are there between (0, 0) and (t, x)? This is ρ. Points are (yi, zi), order
them by y1 < · · · < yn. The question is what is the law of permutation given the order of zi? Should
be uniform, because (yi, zi) ∼i.i.d. in rectangle. Hence,

L(x, t) = ln = lρ.

Now we have two points of view on random function L(x, y). The first approach is random
geometry: Let us discretize the quadrant. Put i.i.d. weights wedge on edges of the lattice. Set

Lw(x, t) = min
Monotone lattice paths from (0,0) to (x,t)

(wl1 + wl2 + · · ·+ wlK ).

• Liquid percolates (0, 0) → (x, t), known as first passage percolation.

• Discrete time (0, 0) → (x, t). This is the fastest time to reach it.
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If we multiply all the wi by −1, and we replace minimize problem by maximize problem, which is
called last passage percolation.

Proposition 14.2. Suppose w ∼i.i.d. Bernoulli(
1

2N2 ), then last passage time (0, 0) → (Nx,Nt) will
converge to L(x, t) as N → ∞.

Proof. The set of edges where w = 1 becomes Poisson Point Process as N → ∞. The remaining
edges are 0. As N → ∞, sum of w becomes the maximum number of points you take along the
path.

Another point of view is to think about L(x, t) as a random function at time t.

Lemma 14.3. L(x, t) is monotone in t.

Proof. Any path from (0, 0) to (x, t) can be extended to (x, t+∆t).

L(x, t) is a random growth of an interface. What are the rules?

• L(x, 0) = 0

• Point at (x, t) create an island, which grows linearly.

• Islands merge into one when they collide.

It is called Polynuclear Growth Model (PGM).
Then we want to understand why is asymptotics given by RM-object. We do it through Robinson-

Schensted correspondence.

Definition 14.4 (Partition). Partition of n = representation of n as a sum of positive integers:
n = λ1 + λ2 + · · · .

Definition 14.5 (YD). Young diagram = drawing of λ as a collection of boxes.

Definition 14.6 (SYT). Standard Young Tableau of shape λ = filling of boxes with numbers 1, . . . , n
in increasing order along rows and columns.

Definition 14.7 (RS-correspondence). RS-correspondence: σ ∈ Sn → pairs of SYT of same shape
λ ⊢ n.

We grow SYT by adding boxes to YD one by one σ = σ(1) · · ·σ(n).

Theorem 14.8. Given σ ∈ Sn, construct a pair of SYT.

1. The outcome of the algorithm

2. The tableau which records how the YD is growing

Then this is a bijection between σ and pairs of the same shape λ. And λ1 = length of largest
increasing subsequence in σ.

69



Corollary 14.9. Set dimλ = SYT of shape λ. Then ln
d
= λ1, where λ ⊢ n is a random partition

distributed with weights Probn(λ) =
dim2 λ

n! .

Theorem 14.10. λ = (λ1 ≥ · · · ≥ λK ≥ 0), λ ⊢ n. Then

dimλ =
n!∏K

i=1(λi +K − i)!

∏
1≤i<j≤K

((λi − i)− (λj − j))

Remark 14.11. K can be arbitrary large, as long as λK+1 = 0 (This formula is stable).

Proof. Check recurrence.

dimλ =
∑

λ=µ+□

dimµ.

Corollary 14.12. Plancherel measure is

Probn(λ) = n!
∏

1≤i<j≤K

((λi − i)− (λj − j))
2

K∏
i=1

1

[(λi +K − i)!]2

Like a RM dist at β = 2, but

1.
∑K

i=1 λi = n→ fixed (but Trace of matrix was not fixed previously)

2. K is not fixed (but for matrix, K was dimension, fixed)

Because of (1) Plancherel is not a DPP. But there is a remedy.

Definition 14.13 (Poissonized Plancherel measure). For τ > 0, the Poissonized Plancherel measure
PP(τ) is a probability measure on all Young diagrams λ (i.e. n is not fixed) such that

Prob(λ) = e−τ τ
n

n!

(
dim2 λ

n!

)
= e−ττn dim2 λ

(
1

n!

)2

.

Remark 14.14. Sample n as Poisson(τ), then sample λ ⊢ n. It is the same mechanism as ln →
L(x, y) in the first half.

Theorem 14.15. Associate to PP(τ) random λ an infinite particle configuration {λi − i+ 1
2}

∞
i=1 ⊂

Z+ 1
2 . These points form a DPP with kernel

K(x, y) =
1

2πi

{
exp

(√
τ
(
v − v−1 − w + w−1

))
vx−1wy−1

√
vw

v − w
dv dw.
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Idea of the proof. See Lectures on integrable probability.

Theorem 14.16. Let λ be PP (τ). Then as τ → ∞{
λi − 2

√
τ

τ
1
6

}∞

i=1

→ Airy Point Process

And {
λi − 2

√
τ

τ
1
6

}∞

i=1

→ TW2

Corollary 14.17. As τ → ∞
L(x, t)− 2

√
t2−x2

2

( t
2−x2

2 )
1
6

→ TW2

And
ln − 2

√
n

n
1
6

→ TW2

Proof. Combine all the results.
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