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1 Jan 21st

1.1 Origins, historic motivations, and sample results

In this course, we will primarily focus on random matrices and their eigenvalues. To provide moti-
vation, we will begin by exploring the history of random matrix theory.

The history of random matrices can be divided into three significant waves. The first wave
occurred during the 1920s to 1930s, which in one side is related to the representation theory of Lie
groups. From group theory, any compact group can induce a canonical probability measure, which
is called Haar measure (formalization of uniform measure).

We can discuss a central example: consider the unitary group G = % (N), which consists of
N x N unitary matrices u. The eigenvalues of u, denoted as z1,...,zy, are N points on the unit
circle. This is because for ue; = z;e;, we have |2;|%e; = 27 z;e; = u*ue; = e;, and thus |z|? = 1.

Moreover, H. Weyl developed the following theorem, which describes the density of the N eigen-
values of a randomly sampled matrix from % (N).

Theorem 1.1. Let u be a uniformly random element of % (N). Then its eigenvalues are distributed
with density
p(Zh s 7ZN) = H |ZJ - Zi|2-
i<j
In parallel, people derive random matrix from multi-dimensional stastics. Let X = [z;;] be
N x T matrix of real data and define sample covariance matrix as M = X X* (we call M in that way

because 7-M is an estimator for the true covariance of N dim vector represented by one column).
The main results are from Hsu, who proved something more general:

Theorem 1.2. Suppose x;; ud A(0,1), T > N. The density of N real eigenvalues of M is

T—N

N —1 .
o) =TT~ M TL (05 e %),
=1

i<j

As a conclusion, the first era focuses on explicit N computations.

Next, we arrive at the 1950s, a period when the eigenvalues of large random matrices began
to serve as a universal model for various point processes. This work contributed to Eugene Wigner
receiving the Nobel Prize in Physics in 1963. The originates of this work are in quantum mechanics,
where observations are closely linked to the eigenvalues of operators. One basic idea here is to
approximate operators in infinite dimension spaces by large dimensional random matrices.

Consider the simplest matrix GOE (Gaussian Orthogonal Ensemble), which is defined as M =
(X + X*) where X is N x N with entries i A°(0,1). We also consider GUE (Guassian Unitary
Ensemble) and GSE (Gaussian Symplectic Ensemble) in this course.

The main results of this era is Gaudin-Mehta Distribution, which involved spacing between two
neighboured eigenvalues A; — A\; 1. The GM distribution is related in a very range region, including
neutron resonance spectroscopy, Dirichlet Boundary Value Problem, the imaginary part of Riemann
zeta function and even bus interval distribution!

In the last 20 years, although many proofs of universal approximation of GM distribution have
been provided, the underlying conceptual reasons remain not fully understood.

The third wave began in the last 25 years and continues to the present day, which focuses
on the largest and smallest eigenvalues. The main results of this wave include the Tracy-Widom
distributions, which have become widely recognized and influential.

Definition 1.3 (Tracy-Widom distribution). TWi and TWs are limits (after proper centering and
rescaling) for the laws of largest eigenvalues in GOE and GUE, respectively.



They are also widespread in 1) random matrix theory and 2) combinatorial probability.
Consider an intuitive example, where we take a permutation of numbers: 1,2, ...,n — 1,12, ..., ip.
Denote [(o) as the length of longest increasing subsequence, and we have the theorem

Theorem 1.4. Baik—Deift-Johansson theorem Let [, be the length of LIS in uniformly random
permutation of {1,2,...,n}, then

n V81, — 2vn) % TW.

Longest Increasing subsequence

60000000

® ®@ 00 @
12346

Figure 1: Largest increasing subsequence

Another application is the KPZ universality class for interface growth models, which played a
role in the awarding of the 2021 Nobel Prize in Physics. Theoretical tools, such as replicas, are used
to demonstrate that the large-time fluctuations of growing interfaces converge to the Tracy-Widom
distribution TWs, which depends on geometry of the system.

«-®

Figure 2: KPZ growth model



In recent years, with the advancement of artificial intelligence and machine learning, two notable
applications have emerged. The first one is ”Signal + Noise problem”, which is formulated as:

C=A+ B,

where C' is the observed matrix, A is a deterministic matrix which is always low rank and B is a
random matrix, e.g. GOE or GUE.

Figure 3: Background Subtraction from an Image

Determining what A is by examining C' is a fundamental problem in sparse recovery, and the
largest eigenvalue of C plays a significant role in this process.
Another example involves solving a system of linear equations:

AX =,

where A is an N x T matrix, X is an unknown 7" x 1 vector and Y is a known N x 1 vector. An
important question is how sensitive is the solution to small perturbations of Y, which is related to
the condition number xk = z:a:

Moreover, in these years large language model has developed a lot and they have many matrix
multiplications inside. A natural question is: can we analysis them using random matrices?

In this class, we will give an overview of main types of random matrix behaviors and some tools

to figure them out.

1.2 First computation: density of eigenvalues in classical ensembles of
random matrices (GOE, GUE, GSE, etc)

Let X be N x N matrix with i.i.d. entries:
a) A (0,1)
b)A4(0,1) +i.47(0,1)
)N (0,1) +iA4(0,1) 4+ jA(0,1) + kA(0,1)



Set M = (X 4 X*), and we have the main theorem in today’s lecture.

Theorem 1.5. Let the eigenvalues of M be Ay > Ao > ... > Ay, and they have density

%HM - \il? Hexp D dh oy,

i<j
where 8 =1,2,4 for a), b), ¢) and

27T N/2 r(1+(j+1)3/2)

I(1+8/2)

:1

is the partition function (normalization factor).

Proof. We prove 8 = 1 here and leave § = 2 to the homework.
Step 1 Claim density of M = (X + X*) ~ exp(—13 tr(M?)).
Indeed,

“Sni = Y (e
i=1 i<j %’_’
., N (0,2)
implies that the density of M o exp(—3 tr(M?))

Step 2 We can calculate that exp(—3 tr(M?)) = vazl exp(—%’?).

We derive it immediately by diagonalizing the the matrix M.

Step 3 Each symmetric matrix is determined by its eigenvalues and eigenvectors, i.e. there
exists an almost bijection 7

T WN X O(N) — %N
A1 <Ao< ..<AN Orthogonal Bases Symmetric Matrix

We say ”almost” because indeed the map is not injective: we can multiply the eigenvalue by +1. In
other words, if the eigenvalues are unique, 7=1(M) has exactly 2 elements.
Now we give the key proposition of the proof.

Proposition 1.6. Consider the map 7 : (A, O) — B, where 7((A,0)) = OAO*. Then the Jocobian
of the map is [, |[A; — Ail-

i<j
Remark 1.7. It is an important technique to transform an intractable density calculation into a
tractable one and a Jocobian.

Proof. Tt is sufficient to calculate by taking O = Id, as when we transform O to A - O (where
A is orthogonal), the uniform measure on O(N) and the Lebesgue measure on J7(N) remain
unchanged.

Then we take O = exp(B) = Id+B+ ... and we can deduce that B+ B* = 0 as OO* = Id. Then



the map 7 can be written as

A0 0 0
0 X O 0
(O, An) exp(B)) > exp(B) [ 0 0 As 0 fexp(=)
0 0 O An
1 0 0 0
0 X O 0
Md+B)| 0 0 A3 0 | (1d— B) + o(B)
0 0 O An
M 000 0
0 X O 0
1o 0 0
0 0 O An
0 biz(A2 = A1) bis(Az — A1) o0 bi(An — A1)
ba1 (A1 — Az) 0 bas(Az —A2) -+ ban(An — A2)
4+ | bs1(A1 — A3)  baa(A2 — Az) 0 o ban(An — A3) | 4 o(B)
bnl(Al - >\n) bn2(A2 - )\n) bn3(>\3 - /\n) e 0
As B has only * ( D free parameter, so the Jacobian of the map is [Tic; A7 — Adl- O

Step 4 We now calculate Z:

Cen)N2 T+ (G +1)8/2
o s oo o=

1<J 7=0

Now we give some other ensembles. The first one is density of rectangular matrix.

Definition 1.8 (Laguerre or Wishart ensemble). Take N x M matriz X with N < M and assume
it has singular value decomposition X = U diag{sy,...,sn}V7T

Theorem 1.9. Let X be N x M with i.i.d. real/complex/quarternion Gaussian matriz elements,
then the density of \; = s?

N
Mo B(M_N41)
P, oo An) o [T NG = Adl? Hexp(fg)'/\iz(M NEDTL . doy.

1<J
Remark 1.10. This density is also known as multivariate I distribution.

Another ensemble involves subspace projection. Imagine that we have two rectangular arrays
X:NxTandY : K xT, where N < K <T. Px is a projection on N-dimensional subspace
in T-dimensional space spanned by N rows of X and Py is defined similarly. Squared canonical
correlations ¢; are N non-zero eigenvalues Px Py (012 = cos? 0;).



Theorem 1.11. Assume X and Y are independent with i.i.d. Gaussian real/complez/quarternion
elements. The eigenvalues of Px Py have density

N
B(g— _
PO e An) o [T = Adl? - T 0 7 1 = A 3TN K401y L day,
=1

i<j

where we assume N < K <T and N+ K <T,0< )\, <1.

Remark 1.12. This density is also known as multivariate 8 distribution.
The general form of the eigenvalues in such ensembles is

N
IT = xl? HV(Ai).

1<j
— —

logorithm pairwise interaction potential

whose name comes from log-gas or S-ensemble.



2 Jan 28th

Happy Chinese New Year!

2.1 Law of Large Numbers through tridiagonal matrices

Today our goal is to prove the law of large numbers for any 5 > 0, which is known as the semi-circle
law. Our main tools are triangle matrix and moment method.

Theorem 2.1. Consider the real symmetric tridiagonal matriz

TXsm-1  A(0,1) - 0
Ts = . ) )
0 0 e H(0,1)

where the second diagonal entries are Xg(n—1ys Xa(n-2) - X8- Xk = /X5 = Ele A(0,1)2, whose
density is
1 22
E_1p(k ot lem
Then the eigenvalues of Tg have the same distribution of GBE.

Proof. We present for § = 1. By linear algebra, we can choose an orthogonal matrix U;, and
transform the matrix M to Uy MU]", whose the first row is

Note that the eigenvalues do not change after the transformation.
We can inductively do the same operation on the rest sub-matrix. O

SEN

Corollary 2.2. For 8 =1,2,4, the law of eigenvalues ~ Hi<j (z; — x;)P Hfil exp(—5).
Theorem 2.3. In fact, the corollary is true for any B > 0.
Now we begin to prove the semi-circle law. First we give the key result of trace calculation.

Theorem 2.4. For each k > 0,8 > 0, we have

N )
@tr(]}?) _ N;H ;sz N—00,in probability {(()g)k s : : Z ZZZZ;L.
where Caty, is the k-the catalan number defined as
1 2k
Caty = Pl ( I )
Proof. By SLLN, we have
i XD B
N—oo 2N 2’
XB(N—aN) Al —a)




So by the definition of the trace, we have

k N . N 1)
tr (5%) = Z Z (somo Xj(;A\v[)) (somc ”1\%1))

m=1 k-step paths
from m tom

N B /N —m\*
= Z (#k-step paths from m to m) 5 (N) + o(N).

m=1

The second equation follows from that if there exists ”some %”, the term vanishes. When 2 1 £,

#k-step paths from m to m is zero. When 2 | k, #k-step paths from m to m = (ﬁ) Approximate
2
the summation by integration and we have

1 To \* (kY (B\? [* s B\ *
o (ow) = () (5) [re-ons(3)

Now we introduce the semi-circle distribution.

Definition 2.5 (Wiegner semi-circle distribution). The density of the distribution is

p(x) ! V4 — a2

T om
We use moment method to recover the proof and give the definition.

Theorem 2.6. Let my are moments of Tg and we have

_ 1 u .
My = {%+1 (5) , U 1S even.

Theorem 2.7. my are moments of semi-circle law and

2
mk:/ p(z)z” de.

-2

Proof. (Method I) We just calculate
1
my = | ——\/4— x22" dx.
g / V2T

Let £ = 2cos 6, and by inductive calculation, we derive the results. O]

However, we are not satisfied for the calculation is not so intuitive. We then introduce another
proof.

Proof. (Method II) Introduce generating function:

G(z) = Z mpz R
k=0

mo = 1. By classical results, we have

= 1—/1-14
Z Catn " = TZE =: C(l‘)
n=0

10



Now we can derive the expression of G(z) using C(x).

o0 o0 P
z) = g mez Kl = E Cat; 2721 = —
k=0 1=0

Next we introduce two propositions.

Proposition 2.8.

G(z) :/de.

Z—X

Proof. By Taylor expansion, we have

/ u(_x) de = 1/ fﬁx)g dz

k=0
oo
:kaz k—1
k=0

Proposition 2.9.

R .
p(zg) = - yolg%Jr S(G(xo + iyo)).

Remark 2.10. We can just add a perturbation onto the imagine axis and obtain the information

of the point.

Proof. By proposition 2.8, we have

—
CQ

€
o
8

1
~23(Glao + i) = f/

™ x0+zyo—xu

l‘o—l‘—lyo

YT
_/77(.’)3—.%'0(; +y2H( @) da-

Notice that %(yﬁ is a "good” kernel, and thus as yg — 0

CQ

[ 3 e do > o),

7 (x — 20)? + Y5

Return to the Theorem 2.7, by proposition 2.9

u(wo) = —= lim S (; [CER et —4)}) _ {Oﬂ_i

T+
T y—0 o

11

Y

2| > 2;
|z < 2.



Now we are prepared to formally state and prove the semi-circle law.

Theorem 2.11. Let A\; < ... < Ay be eigenvalues of GBE. Set x; = A\; ﬁizv and let uyn be their

- . _ 1 N
empirical measure: N = N > ieq0z,. Then

, 1
lim UN = —V 4 — -T2]1‘1|§2 = Mcircle(x)
N—o0 2

weakly in probability, which means ¥V bounded continuous function f(x)

N—00

iim_ [ f@n(e) = [ ) o
Proof. Step 1 The results hold for f(z) = x*.

Step 2 The results hold for any polynomials.
Step 3 Take L > 2, the results hold for f(z) = ]l‘wa:ck. We have

_ ‘ [ atun(an

S LQm/ - x2k+2m,uN(dx)

‘ / F(@)uy (dz)

N L_2m/.132k+2m,u(dl‘)

< [2mg2k+2m _ 92k (i)m L

Step 4 By step 3, we can restrict the support set of f on a compact set, i.e. [—4,4]. Apply the
Weierstrass theorem and we get the proof. O

At last, we give three generalizations of the semi-circle law. Next theorem tells us the gaussian
assumption of the semi-circle law is not neccessary.

Theorem 2.12. Let z;,i < j be i.i.d. random wvariables with finite moments. Ez;; = 0 and
Ezfj = % Let Y; be i.i.d. with finite moments. Then the semi-circle law still holds for the matriz
with entries Y; and z;.

Theorem 2.13 (Marchenko-Pastur Law). Consider Laguerre S-ensemble N < M, and its density
18

Aq
-2

= olw

[Ty =27 T

1<J i

e

=

1

Let x; = é\—]{[, then when M, N — oo with thermodynamics condition 1‘]\/{ — C >1. Then uy =

% Zf\il Oz, Nzoo Jistribution on Ry with density %1)\7<w<)\+, where Ay = AL (C).

Theorem 2.14 (Wachter Law). Consider Jacobi 5-ensemble with N < K < T and density func-
B(Kg— —
tion [],; Hfil A2 (K=N+1) 1(1 - )\i)g(T*N*KH)*l. Assume N, K, T — oo with thermodynamics

condition % — C1 amd % = Cy < Cy, C1+Cy < 1. Then uy = %Zf;l 0y, — distribution on

VOi—2) (@A)
)

R o with density g

Ix_ <a<r,, where Ax = AL(Cy,Cy).

12



3 Feb 4th

3.1 Point process

In the last lecture, we discuss macroscopic behavior of eigenvalues, and today we are going to focus
on the microscopic behavior of eigenvalues of local limits. We view eigenvalues as N points on the
label line, and the limits here can be split into two classes

e Bulk limit: limit somewhere in the middle, so that practicles extend in both directions from a
reference point.

e Edge limit: focus on the largest/smallest eigenvalue, so that the limit is a semiinfinite config-
uration: 7 < 9 < ... 0r 1 > Tg > T3z > ...

The question is how to describe random infinite point configurations. And the difficulty lies in
that there is no good underlying configurations.

Assume 2 is a statespace with topology structure, and we can give the definition of the config-
uration.

Definition 3.1 (Point configuration and window). Define a locally finite subset of 2 as point
configuration and Conf(Z") be the set of all the point configuration. Define window as compact
subset of X. The window induce a measure

NaA(X) = # points of A in X.

We state that the configuration has intrinsic Borel structure, which means Conf(x) is the minimal
o— algebra which makes all N4 measurable functions. We can ask questions about probability which
can be inferred from random variables N4. For instance, P (No particles in [a, b]).

Example 3.2. (Bernoulli point process) Let X = Z and for each a € Z, we place a particle there
with probabilities 0 < p < 1. Take A C Z containing n elements, then

n

P(Na = k) =p"(1-p)" " (k
N4 and Np are independent if A(\ B = (.

Example 3.3. (Poisson point process) Let X =R and A € R, for A C R, we have N4 ~ Poi(\|A|),
which means

), for 0 <k <n.

k
P(Ns =k) = e*”“‘%, fork=0,1,2,...

For disjoint Ay, ..., Apm, we have Na,,...,Na, are independent.

We can derive Poisson point process by taking p — 0 in Bernoulli point process and let Z — mZ.
Here we give an intuitive derivation (choose A to be the probability)

0= () (2 -2
= %e*k (b (_(ba)_nj)inlz;l;bi;nm_k (T/’\l)k (1 B $>(ba)mk

= crae-ar ((1-2) (14 M’;ﬂ_k»(“)m’“

716()\(17—@))]6 —(b—a)A k

=€ - € €

k!

_ ommap (b —a))*
i

13



By the construction of Lebesgue measure, we derive the results for arbitrary A.
Now we introduce a tool for describing point processes — ”correlation function”.

Definition 3.4 (Correlation function). Assume 2~ is descrete and X is a point process of 2. The
n-th correlation function p, is a function of n distinct variables.

on(T1, . xn) =Pl € X, .. 2, € X).

Example 3.5 (Bernoulli).

n

pn(T1, .oy xy) = p.

Proposition 3.6. For discrete X, the sequence of functions p1, pa, ... uniquely describe the law of
X.

Proof. The law of X is the joint law of all N4, and also equals to all probabilities of the sort

p ap€X, aeX, .., a,€eX
bh¢X, beX, .., b,¢gX)"
By inclusive-exclusive formula, we can get the results. O

Definition 3.7. The n-th correlation measure p, is a symmetric measure on Z ™ such that for any
compactly supported bounded measurable f: Z™ — R, we have

fon(day,...,dz,) = E, Z f(ziyy ymiy)
R'ﬂ,

T1yeney x, distinct
Proposition 3.8. If 2 is discrete, then this is the same definition as before.

Proof. Both sides are linear in f, so we can take

f(xb ceey xn) = ]lxlzal,...,wn:an-
and the theorem follows. O

Remark 3.9. Often we take & = R and p is the Lebesgue measure so that py,(x1, ..., x,) dzy ... dz, &~
P (there are particles in [x1,z1 + dz1]U ... U[@n, zn + dzy]).

In Homework 2, we can prove for poisson process of intensity A, p,(z1,...,z,) w.r.t Lebesgue
measure.

Proposition 3.10. For compact A C 2", we have

E[NA(NA—I)...(NA—TL-FD]:/ /pn(dirl,...,dl'n).

Proof. Take f =14, (x)...14, (z) and we get the proof. O
Then we state a theorem without proof.

Theorem 3.11. Under mild growth conditions, correlation measures exist and unique determine
the law of the point process.

Notice that in proposition 3.10, p, are linked to moments of N4, so we need conditions similar
to the ones in "Moment problem for random variables”. We give the following proposition.

14



Proposition 3.12. Take a point process formed by N particles X1, ..., Xn with joint probability
density P(dxy, ...,dzy) assumed to symmetric w.r.t. permutations of €1, ..., TN .

0 , forn> N;
p =
n (Nliln)! N pn(dxy,...,dzy) , form < N.

Proof. When n > N, we can’t choose n distinct particles from [N]; and for n < N,

Ex [Z f(xil,...,min)} :/ Z f(ziyy oy )pn(dey, ..., dzy).

Ty seeesTi, distinct

By symmetry, we derive the proof. O

3.2 Correlation kernel

Now we introduce an important class.

Definition 3.13 (Determinantal). A point process X is determinantal if there 3 k(x,y) - correlation
kernel on & x Z such that correlation functions with respect to some reference measure p have the
form

pn(T1, . xN) = det[k(xi,xj)]ft[j-zl
Remark 3.14. 1. The order of x; does not matter.

2. Replacement k(z,y) with %k(x,y) leads to the same correlation functions.

3. Reduction of complexity: all p, are encoded in a single function k(x,y).

Example 3.15 (Poisson process). For Poisson process p, = A" is determinantal with k(z,y) =
Ad(z =y)

Next, we introduce another important class.

Definition 3.16. (Biorthogonal ensemble) Consider space Z with reference measure . An N-point
biorthogonal ensemble is a probability measure on {x1,..,xn} C Z of the form

pn(dzy,...,dzy) =Cy det[gbi(xj)]fyj:l det[1/1,;(xj)]ﬁjzlu(dml)...u(dxzv).
for constant Cy > 0 and functions ¢;,; such that [, ¢i(x)h;(x) < oo for alli,j=1,...,N.

Example 3.17. Consider measure on RN of density ~ [Ticj(@i — z;)? Hfil V(x;). Then choose
¢i(x) = arbitrary degree (i — 1) polynomials, and similar for 1;. Choose p(dz) = V(x)dx. Then,
by Vandermonde’s determinant, we have

det[p;(x;)]} ;=1 = H(Aj = Ai).

Remark 3.18. The derivation of Vandermonde’s determinant is as follows: The degree of the
polynomials is M

, and A\j — Aj is a factor of the determinant.
Theorem 3.19. Biorthogonal ensemble is a determinantal point process with

N

K(z,y) = Y ¢i(x); ()G

ij=1

15



Remark 3.20. If ¢; and v, are biorthogonal, which means
[ tintan) = st =,

then G~ is easy to calculate.

Proof. Step 1 We first calculate Cy:

Ot = [ detfon(o I oy detluna) oy (do).n(do)
XN
N

=317 [ 6o (x:)0r, (i) u(dy)

: i=1
= N'!det(G).
Step 2 Notice that
det Gdet[@(zj)mj:l det[ﬂ’i(%‘)]ﬁ’j:l =1
We have
pPN(T1, . TN) = /%N det[p; (25)]};—1 det[thi ()] p(dar)...pu(dz ).

Step 3 We can choose
K(zi,25) = (¢(x:) (G~ ) (w(x;)) "
O
Corollary 3.21 (GUE). For N—particle GUE eigenvalues of density ~ [, _; (vi—x;)? Hf\il exp(—%?),
it is a determinantal point process with correlation kernel

BN () = XNI H(@)Hi(y) 22

&
k=0 <HkaHk>

w.r.t Lebesque measure, where H, (x) is Hermite polynomial.

Remark 3.22. It seems the kN x (z,y) is not symmetric, but we can multiply an % and transform
Yy 2 3‘2 Yy 2
e~ % into e~

3.3 Properties of Hermite polynomial
In this section, we take a review of Hermite polynomials.
Definition 3.23 (Hermite polynomial). H, (z) is defined as
e Hy(z)=a"+an 12" '+ ... 4+ag forn=0,1,2,....
° [z Hn(:r)Hm(x)e*§ =/2mn!ls(n = m).
Proposition 3.24. We have

I 2 O a2
n = (=1\"ez -
@)= (-1ret L
22
n! n 22 e~ 7T
= —(— ) d
27r2< e i(z—x)"*l :
n! S



Proof. The first line follows from integration by parts. The second line is residue formula and the
third kine is Integration by substitution. O

Corollary 3.25.
H,1(x) — xHy(x) + nH,—q1(x) = 0.

Proof.
2 2
n! e~ Tt p41 n! e~ T e
LHS = — _—— - dz=— ¢ d[ — | =0.
2mi j{) Zntl [ z r+2]dz 27t Jo < zntl )
O
Proposition 3.26. The sum in det of k™ (x,y) telescopes to
N-1
Z Hy(z)Hi(y) _ 1 Hy(z)Hy-1(y) — Hy-1(z)Hn (y)
= (Hy, Hy) (Hy-1,HN-1) r—y -
Proof. Induction. Use Corollary 3.25. O
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4 Feb 11th

4.1 Steepest Descent

Today we use the Hermite polynomials and relative kernel for asymptotic analysis. The main result
is as follows.

Theorem 4.1. Tuke s € (—2,2), then

lim —KGUE sVN + —— sx/NJri =K’ y)ez @y,

where (3]
W(Z y)y , TFY;
Hoial p T =y
and 1
= —V4-s2
r 27
Remark 4.2. If we take x =y, we have
K(z,z) — p,

which recovers the semi-circle law.

Remark 4.3. FEigenvalues live on [—2v/' N, 2\/N], and we expect spacing of order ﬁ (the behaviour
of eigenvalues align with ﬁ) We call the limit process at 8 = 2 sine process of intensity p.

Proof. (for s = 0) First, we recall some important properties of Hermite polynomials H,:

o Hy(x) =a" +a, 12" 1 + ...
o [p Hp(x)Hp(x) =21 n! 0p—p,

o (By induction) For even n, Hy(z) =n! (-1)% Y2 _ — L™ _om

m=0 (om)1(2—m)12F ™

e (By induction) For odd n, H,(z) = n! (-=1)"z" ;%:10 e
@Em+D)(25E-m)127 2 ™
For even n,
ity =MD SN ) S ey
vn ) = (3) (2m)! (3)!
And for odd n
()= 2—f1<—1>—"51 - (7). (2 —mt 1) a2 ol 2—fl<—1>—"51
vn (") = () (2m +1)! (251
And we have
Kn(, ) VN Hn(F)Hn-1(F5) — Hv- () Hn ()
N' VN’ NWarm T—y

2=N+L NI(N — 1)!(=1) coswsiny — sinz cos y
NW2r (%)' %)' T—y

sin x.



for general s.

Proposition 4.4. We have

(z—w)?
2 w.

1 100 n

A o0 t—z)2
Hn(il') = \}?/ tnei( 2) dt.

Proof. We apply the properties of characteristic function of .4°(0,1).

22

1 & t2
— eT T Tt =7
V2T /700

Take derivations for n times at each side

Hola) = (1" (e %] =~ (i [ e T
n(x)=(—1)"ez[—e = ——(—1 e .

ox™ 2 o
Change t into it and we get the proof. O

Now we can apply Proposition 4.4 to our problem.

Corollary 4.5. Kn(z,y) has a double contour integral form

712
1 9inelT_wy dwdz

(27Ti)2 ZNeéfza: w—z
22 zx
Proof. By H’;sz) =54 76;3:1 dz and Proposition 4.4,
N-1 w? N-1
1 Hy(x) a2 1 wNe T~y wh
Kn(z,y) = ——= Hi(y)e” 7 = - - dwdz.
Vo kZ:O k! (27i)? @ N oZ —2x P zht1
Rearrange the contour: |z| < |w| and we have
N-1 wk B 1
Z 2L — 2
k=0
O
Return to our problem, we want to analyze
2
1 x y 1 exp(N(logw + % — ws)) dwdz
—Kn(sVN + —,sVN 4+ —) = - 2 exp(zx —w .
VN N VN \/N) (27m)2ﬁ exleogZJrﬁ*ZS ( y)w*Z
2

Now we need to introduce a strong tool to calculate the asymptotic property of the integral called
”steepest descent” or ”saddle point method”.

Remark 4.6. The method is highly related to the Landau’s calculation in statistical physics — use
Taylor’s expansion to analyze the phase transition. First, we warm up by exploring two interesting
and familiar examples.
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Example 4.7 (Stiring’s formula). Here we are going to prove
n n
n! = v/2mn (f) (1+ on(1)).
e
Proof.
nl=Tn+1)= / z"e % dx = n" ! / exp(—n(y — logy)) dy.
0 0

The minimum of y — logy is y = 1, and notice that

y—logy=1- %(y* 1)? +O((y — 1)*).

By setting y =1+ ﬁ, we have

42
n! = n"“\/lﬁ/exp(n -3 + O(%)) dz.

which derives the result

n! = V2 (g)" (1+ 0n(1)).

Example 4.8 (CLT of binomial distribution). Here we are going to prove

n\  1+o0,(1) 1
k] [27n. ak+1/2(1_a)n—k+1/2

where o = % The formula can be directly derived from the CLT, but here we provide a new proof

by steepest descent.
The genius tdea is to observe that

@ - fo @ 4= 7406“’(‘”@1%3 —log(1 + 2))) d=.

The critical point z. = %=, and we have f(z) = f(z.) + %(z —20)2 +O((z — 2.)%). Notice that

l1-a’
from complex analysis, we have

Proposition 4.9. There exists some contour around O, passing through the critical point z., such
that R(f) is maximized at z.

Take the contour as above, we give

(n) _ 14 o(1) (14 z.)" /exp<1(1—oz)3(z — 2¢)H) dz

k 2mi LT 2 «
1+ 0,(1) 1
V2rn ok t1/2(1 = q)n—k+1/2

Return to our problem, let f(z) =logz + % — 28, and we want to analyze

dwdz.

1 @g exp(N(f(w) — f(2))) exp(zx — wy)

(2mi)? w—z

20



To calculate the integral, we design a new contour, which satisfies

R(f(w) = f(2)) <0,

the equality holds if and only if z = z.. By the steepest descent, we localize w = z. + \/lﬁ and

stiv4—s2
2

z2=2z.+ \/Lﬁ, where z, = . The integrand decays to 0 at the order of \/LN

@ — 0+ [ZC exp(z(x —y)) dz

residual at w = z

_ Lexp(ze(z — y)) — exp(Ze(z — y))
™ (x —y)2i
— Rze(z—y)) sin[S(ze(z — y))]
m(z —y)
o3(@=y) sinmp(x — y)
m(z —y)

Gloltl, Re +0) Geols as
Ret - oge—— — e £42) = | Louc)
x [ L '0%‘
B NRNRE AN
T AN )

UARY

L2 Qunddeg
L ) IN
| / Rl ) ol
) A T~ OV\ nwew (ov*im.
/ ™ Ref5) $R) 4o
yiawi\s QMJLp\\ Wik | o
7 / . bRl | paaty
We Mool D lhiaa J/W-watowr| [ [ | u egrrol

Figure 4: Choose specific contours for integral

O

Remark 4.10. For |s| > 2, we can show that double contour integrand decays exponential fast in
N.

Corollary 4.11. For |s| < 2, the point process {VN(X\; — sV N)} converges in distribution as
N — oo to the sine process of intensity p = %\/4 — 52,

Proof. (proof sketch)
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e There exists some DPP with kernel K?,

sin*
e Express distributions of N4 and deduce convergence from Theorem 1.

O

Next we consider |s| = 2. We give an intuitive understanding first. Consider the semi-circle law

and let y%’“ ~ yn_k. We have

2
1 k
—— V4 —22dz = —.
/Z/Nk V2T N

As the integral can be approximated as (2 — yN,k)3/2 and we have Ay — Any_1 =~ N—s.

Another intuitive understanding comes from the spacing. The spacing of v NAy has the order
1 .
N3. Now, we introduce the theorem as belows.

Theorem 4.12.

ol

Jim N8 KGUE(@2VN +2N"8,2VN + yN~8)e@W= 2N — K, (z,y)
— 00
_ Ai(@)Al(y) — Aj(x)Ai(y)
T —y ’

where
Al(z) =zAi(x) and Ai(z) -0 as x— oo.

Proof. (proof sketch) The idea is similar to the proof of |s| < 2. The only difference is that Taylor’s
expansion here is to the 3-rd order and we need to use N 3 to balance the N in steepest descent
method. O

22



5 Feb 18th
5.1 Tracy-Widom, Gaudin-Mehta

In today’s lecture, we focus on
e Largest eigenvalue.
e Gaps/spacings between eigenvalues.

Theorem 5.1 (Gap probability). Let X be a DPP on 2 with correlation kernel K(z,y) w.r.t
measure . Then
P(there are no particles in A) = det [Id —K]r,(a,u)

Remark 5.2. If K has finite rank, i.e. K(z,y) =Y i, ¢i(x)¥i(y), the expansion can be reduced
to m x m determinant

det(I — UV) = det(I — VU).

Proof. (Discrete X and finite A) By inclusive-exclusive theory

1
P(there are no particles in A) =1 — Z P(no particles at a) + — Z P(no particles at a,b) + ...

2!
a a,b
1
= 1 — Zpl(a) + E ZpQ((l,b) + eee
a a,b
As pp (21, ..y ) = det K (24, 25)1<i,j<m, by Fredholm expansion, we get the result. O

Remark 5.3. We generalize the result

E [] (1 - ¢(z)) <Edet(ld—¢K)

zeX

Definition 5.4. Let ay > as > ... be point of the Airys point process, then the law of ay is called
Tracy- Widom Distribution (TWa, TWeaug, Fo, Four)-

Proposition 5.5. The distribution of TWs is
P(TWQ S t) = det, [Id — KAiry]Lg(t,oo)~

Proof. We have
P(TW, < t) = P(there are no particles in (¢, +00)).

By some numerical results, the TWs-distribution has some properties
o E [TW3] = —1.77

e Var (TW3) ~ 0.81

o P(TW;y > ) < exp(—%s?’/z)

o P(TW; < s) < exp(—155%)

The rigorous analysis is as follows.
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Theorem 5.6. We have
BIW < 0) = exp(~ [ (@ 1Pg(0)? do),
t
where
q"(z) = wq(x) + 2q(x)°.
Remark 5.7. We have q(z) = A;(z) as x — oo.
By analyzing P(TW, < t) and P(N~'/%(\y — 2¢/N) < t), we can derive

Theorem 5.8.
N=Y6(\y — 2V N) & TW,.

Next, we care about the the second question: the spacing between two eigenvalues.

Definition 5.9. For a shift invariant point process on R, define its spacing as
S, = law of first positive point conditioning on a point at origin.

Remark 5.10. [t is different from the law of the distance S;) between the first positive and the first
negative point. Usually S, > S’;).

Theorem 5.11. For a shift-invariant point process on R of density p1 and assuming all ingredients
exist and are smooth, we have

02 ) .
@P(no articles in (0,x)) = p1 - Ps, (x)

Proof. (Heuristic derivation in a discrete version) For a shift-invariant point process on Z. The left
hand is

P(there are particles at I, but no articles at 1, ...l — 1)

—P(there are particles at [, but no articles at 0,...l — 1),
which also equals to

P(there are particles at 0,1, but no articles at 1,... — 1) = p; - Pg, (z)

Remark 5.12. The probability for spacing in the bulk of GUE becomes

82
@ det (I - Ksin)L?'(O,z)-

The result is an application of the theorem in the last lecture.
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" robertsweeneyblanco.github.io/Computational_Random_Matrix_Theory/Eigenvalues/Zeta_and_GUE/Zeta_and_GUE.html
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Figure 5: The blue curve represents 68722 det(Id — K;,,), and the orange curve represents

5.2 General beta

Now our question is how to generalize 8 = 2 to other values?

In 1960’s, for B = 1,4, there is a parallel but more complicated theory based on Pfaffian Point
Process. (A simple understanding for Pfaffian of A is y/det(A).)

In 2000’s, there emerges theory which covers all 8 > 0 in a uniform way. It is very different from
previous method, for no correlation functions are known for general 5 and one needs to proceed
differently with different .

Theorem 5.13. Consider rescaled GBE of density

[T =27 f[l exp (— ﬁf) .

i<j

Then for fix ¢
lim NYS(\y_; — 2V N) < a;,
N—o0

where A1 < ... < Ay are eigenvalues of GBE and a1 > as > ... is Airyg process defined as the set
of eigenvalues of the stochastic Airy Operator SAOg = 88—:2 —x+ %W’(x) acting on L?*(Rxq) and
vanishing at x = 0.

Remark 5.14. The advantages are the formula and the dependence of B are simple. The disadvan-
tage is that we need to make sense of these eigenvalues. We give three approaches as follows, which
are all based on the integral by parts.

Remark 5.15. This note is a fantastic material to understand the SAOg: note.

25


https://user.keio.ac.jp/~minami/notes_and_preprints/sao.pdf

Approach 5.16 (Rauirez-Rider-Virag; Bloemendal-Virag). Idea: Use variational characterization
of eigenvalues and eigenfunctions of self adjoint operators
Consider Hilbert space L* of functions of [0, +o0] with f(0) =0 and

1112 = /OOO [(f'(x)* + (1 + ) f2(2))] dz < o0

Then L* is completion of smooth, compactly supported functions by this form.
Define a quadratic form

2

H(£9) = (£,54030) = [ 1+ (520~

2
:cg+ﬁwg dx

[T r@ges [T (5 20) o

The last expression does not have w' and is a well-defined r.v. Then (a;, f;) is mazinum of H(f, f)
over f € L*||f|| = 1.

Approach 5.17 (Bloemendol, UToromto Phd Thesis). Transform the function by

F=f-ed Frewdy

Then
= ;x (f”. o S5 FHww)dy (_%w(y)) e e dy)
— —%w’(x) i L % w?(a) e I Fudy
2 — [T 2 (e ~ _ (T2, ~
— ﬁw(m).e 15 75 (y)dy.f'_|_e 55 (y)dy.f//
So

02 2 o 4 - -
SAOsf =\f & (8%2 — ﬁw(x)% + sz(m) —x) f=XAf

which can be solved by the classical theory of S-L operators.

Approach 5.18 (Gorin-Shkolnikov). Using Feynman Kac’s Formula for SAOg, we have

SRR Sy G C ) ) s o
K(x,y,T)\/ﬁexp< 5T >IEBway[]lBZOexp< 2/0 B(t)dtJr\/B/o La(B)dW(a)>]

where B¥Y is the Brownian bridge from x — y in times t € [0,T]. W is a Brownian motion
independent of B.
Then we give a heuristics for Theorem 5.13. From the second lecture, we have

N(0,3) o 0
XB(n—1) 2
| 5 O 0
B = . .
0 0 A(0,2)



We treat N as N x N matriz acting linearly on f(5175), (575 )5 (lev/s), and thus NY/6(T —2v/N)
becomes an operator. Notice that

XBIN-FK) _ N v Lok 1
\/B_\/N—K+JV<2ﬁ)~\/N 2\/NN+JV(2ﬁ).

2) NV (e 2 o4 NV v NV 1
@) N (5@ (0.5) 41+ N7+ glo = N9 (0,55 )
FN( (4 N7V < 2f () 4 flae - N7

— 5o+ N7V + fla - NI

~N/6 (f(x)ﬂ (o, g)) + f'(x) — xf(x).

Remark 5.19. N'/6 is the correct scale if we try to calculate

N
N—UBZ;f (Ni/S) =0(1)

for compact support f.
In order to make this rigorous, start from one of the three approaches, do same opperator for
tridiagonal matrix and pass to the limit in the result.
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6 Feb 25th

6.1 Corners and Bessel functions
In this lecture, we focus on the general question: How eigenvalues play with algebraic operations?
e Cutting Corners. (Lecture 6)
e Addition A, B — A+ B. (Lecture 8+9)
e Multiplication A, B — AB. (No time)
First, we give the definition of ”Orbital measure”.
Definition 6.1. Take A = (A1,...,An) € R,
Orbit(\) = all matrices with eigenvalues A equipped with uniform measure.

Now we need to make sense of this uniform measure.

Approach 6.2. This is a smooth compact manifold embedded into the Euclidean space of all symmet-
ric matrices ((X,Y) = tr(XY)). And there is a well-defined metric and volumn form on Orbit(X),
which can be renormalized to have volumn 1.

a
X:<b
V2

whose eigenvalues = (A1, \a). By the properties of trace and determinant,

Example 6.3. Let =1, N =2,

-5k

a-+c =1+ X
ac—% :/\1/\2 '

a+c a—c

Change the coordinates to ( VAR ,b) , and we have

a+c _ A1+
{ v (,\\/E,\ )2
(a\;ic)2 + b2 — 1 - 2

So (a,b, c) solving this forms a circle, which has a natural uniform measure.
Approach 6.4. Matrix = FEigenvalues + Figenvectors.

Orbit(\) = image of O(N) or U(N) under the map,
and Haar measure on O(N) and U(N) directs to the orbit measure.
Example 6.5. O(2) has two components

cos¢ —sing 4 (€8 ¢ sing
sing coso an sing —cos¢/’
WLOG, we choose the first rotation matriz.
cos¢ —sing\ (A1 O cos¢ sing
sing  cos¢ 0 X/ \—sing cos¢
[ Acos?p+ Agsin® ¢ (A — Ag)sinpcos é
TN\ — Xo)singcos¢  Apsin ¢ + Ay cos? ¢
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Here we can choose

b = ’\1;\/5‘2 sin 2¢
aze = )‘1\2‘2 cos2¢

which gives the same circle and the same uniform measure induced from ¢ € [0, 27].

Theorem 6.6. Let 4 be a random element of Orbit(\) and let p; < ... < un—1 be eigenvalues of
its (N — 1) x (N — 1) corner. Then for 8 =1,2,4,

o A\ < <X << unog L un almost surely.

o The density of p w.r.t Lebesque measure is

8 N-1 N ,
e Tl =0 TT T 0w =308 TTOw =20
2 i<j i=1 j=1 i<j

Our main technique is the lemma as follows.

Lemma 6.7. The law of p1,....in—1 18 the same as N — 1 roots of equation

N f
=1

where &; w X?g-

Proof. We have p1,...,un—1 are N — 1 roots of

0
dot Udiag(A)U* — zIn
0
0 - 0 1
Multiplies <({) (1)> on the left and (g (1)) on the right, we get
0
dot Udiag(A)U* — zIn
0
0 0 1
A — 2 0 e 0 uj
0 Ao—2z - 0 u3 N .
: . ) . | = Uithi _
=det : : . : L= )\i—zH()\l z).
0 0 AN — 2 Ul i=1
Uq u9 s unN 0
Actually, (u; ...,un) is a row of uniformly random orthogonal (unitary) matrix, which is equivalent

to the uniformly random unit vertor in RY (C"), which is

U1 U2 UN
VI + - onP VP + - P e P fon P
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Co . . vv]
where (v1,...,vy) is i.i.d. Guassian vector. Notice that v;vf ~ X% (uuf = i

AL = Zfr:ilfqz)’ we
_H()‘i_z)<N & ):0

Now we are ready to prove the theorem.

find wq,...,uyN solve

Proof. Set p; = E£1 5 (= wuf). Then ¢ > O,Zivzl @; = 1. The joint density of ¢1,...,pN is
given by the Dirichlet distribution of density

( ) F(Ng) 8_4 8
pPlry,...,TN) = T
L5~

Because &; are all I'-distribution with density

Lixg_l
)

and then integrate them on the condition z; + - - - + z . By the Lemma, we multiply Hf\il(z - \i)

with A = Zfil )\_fiz gives a polynomial equations of degree N — 1, so it has at most N — 1 real
roots, then A also has at most NV — 1 real roots.

e When z = \; + ¢ (small enough), A > 0
e When z= X311 —¢, A<0

Hence, there is a root in each [A;, A;11] denoted by p;, ¢ = 1,...,N — 1. Thus we porve the first
conclusion. To calculate the density of u1,...,ux—1, we need to compute the Jacobian of the map:

(1, 0N) = (P15 s iN—1)

Thus o
0pa Hj;éb()‘a = 1) Hj:l (Aa — K5) 1

aub Hi;ﬁa(Aa - >\74) B Hi;ﬁa(Aa - )‘l) . Mo — )\a
Then the Jacobian is
3%}1\7_1 _ 12 O — ) ' { 1 ]N_l
Otib | g p=1 Ijcicn (A = Ai)? Hi]il(/\N - i) Ho = Aa

det [

a,b=1
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While Cauchy determinant tells us that

:|N—1 B H1'<j<N(/‘Li - 'u'j)H'L<j<N()\j — )\2)

det {
a,b=1 H” (i — )‘j)

,U/b_>\a

which gives the Jacobian
Hi<_j<N(p’j — Ii)
[Ticj<an (A = X)

Then we plug the
N-1
Hj:l (Aa — 115)
Pg=—="———">"—,a=1,....N
Hi;ﬁa(Aa - Al)
into p(z1,...,zN) and use the expression of Jacobian, which gives the 2nd conclusion. O

Corollary 6.8. Take Orbit(\), N x N matriz and consider eigenvalues of all principal corners. Let
le(l <1< K < N) be i-th eigenvalue of K x K corner. Then:

e FEigenvalues form an interlacing triangular array, i.e.
xZK'H < sz < 2B+ and :Efv =\

i+1

e The joint density of xX is

N-1 K-1 K
K K\2— K-1 K\B/2—1
X H (xj — ;) b H (m, - Ty )B/
K=1i<j<K a=1 b=1
Proof. By iteration of theorem 1. O

Remark 6.9. For 5 =1,2,4, this is a theorem. For other 8 > 0, this is a definition of 78 corners
process with top row \”.
For 8 =2, all factors disappear and you end up with uniform measure on interlacing array.

Example 6.10 (N=2). e For B =2, x is uniform between A1 and Xs.
e For B =1, x has density (x — X\y) "2y — x)~1/2.
Theorem 6.11. limg_,, B-corners process with top row A = determistic (aX), such that
K/ 9g\N-K N
Ky_5H™ (0 N
H(z —a;) = N (32) Z1;[1(,2: Ai)-

Proof. We only prove the case K = 1. By Lemma 6.7, we have

N N N N X?Vﬁ/NB

0\ 1 '
(32) il;[(z_)\i):H(Z_)\i)Zz—)\i:ﬁlggo (z—)\i)zﬁ

i=1 i=1 i=1 i=1
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Figure 6: The left figure demonstrates the sample GOE (N = 60) and we plot the eigenvalues of
the corner. The right figure demonstrates the roots of Hermite polynomials.

Now we introduce tools for corners processes: Multivariate Bessel functions. The key idea is
similar to the characteristic function, i.e

A Fa(Z) = Elexp(tr(42))].

Observation 6.12. If the law of A is invariant under orthogonal/unitary conjugation, then Fa(Z)
depends on Z only through eigenvalues of Z.

N N o
exp (Z a,”21>‘| = exp (Z %) .
i=1 i=1

Definition 6.14 (The Mutivariate Bessel function). For real A and 8 =1,2,4,

Example 6.13. Let A be GOE/GUE,

Elexp(tr(AZ))]| =E

B, ,..an (2155285 B) = Eacorbir(n lexp(tr(AZ))],
where z1, ..., zN 1S the eigenvalues of Z. The trace only depends on the eigenvalues of Z.

Remark 6.15. We recall the classic Bessel functions, which is defined as

Tal@) = % (5"

n=0
We have Ji(z) = %% We have the iterative equation:
22J +xJ! + (2? — a?)J, = 0.

We have the theorem as follows.

/ei<axu> du = (g)a D(a+1)Jy (),

T

Theorem 6.16.

where a = § — 1 and x = ||al|.
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Remark 6.17. On the analogy of this, we take

S™1 o Orbit(\)
T > eigenvalues A\ < ... < Ay.

We now give the RMT version.
Theorem 6.18. At 5 = 2, we have

N—

B)\l,...,kN(Zla"'7zN7 H

det[(exp(\; zj)]” 1
Hz<g()‘ = X))z — z5)

Let’s give a restatement. By Harish-Chandra integral, we have

‘7 det[(exp(\; zj)]” 1
/U exp(UAU*Z HK' 2
(V) =1 z<] T J 1 J

where A = diag{\1, ..., Ay} and Z = diag{z1, ..., 2n }.
Proof. Almost the same as Theorem 6.6. O
Remark 6.19. What about other values of 37

e At N =1, B,(z;8) = e for all 5.

e For N > 2, there is a similar series expansion of Bx(z1,...,zn; ) in power series in z1,...2ZN .

Theorem 6.20 (Definition). Let {zX}(1 <i < K < N) be B corners process with top row X. Then

N K K—-1
By, ..an (715,283 8) =E |exp Z 2K Zale — a:jK_l ,
K=1 i=1 j=1
where X is defined in Corollary 6.8, and we take expectation for z ~ A (0,In) and matriz ~

Orbit(\). For B =1,2,4, it is a theorem. While for other B, it is a definition.

33



7 Mar 4th

7.1 Asymptotics of corners

In this lecture, we explore the limit of corners as N — oco. There are several meanings of the limit
behavior:

e How K grows with N (fixed or obey thermodynamic conditions).
e Macroscopic limits (semicircle law) or microscopic limits (bulk or edge).
First, we consider the case K is fixed. The main result is as follows.

Theorem 7.1. Set =1,2,4, A = (\1,..., A\n) depends on N. Define m(\) = ﬁ Zil Ai, V() =
~ Zl (A2 =m(N)? and T(N) = + Zf\]:l[)\i —m(N)]?. Assume

) T()\)l/?’
P vy =
then
. Axg(A) —m(A)1d /BN
A V(N2 5 ~GPE

Example 7.2 (General). Consider

N

1

~ > 6, = poand |Ni| < C.
=1

Example 7.3 (Particular). Consider Ay = Mo = - -+ = Ayj2 = 0 and Ayja41 = --- = Ay = 1,
1= %80+ 261 We have m(A) =1, V(A) =% and T(\) = £.
Next we give a proof for # =1 and K =1,2.
Proof. We have
A1
A =TU U*,
An
We have
N & ¢
A L2 d . i
Ay =D Awd =D N
i=1 i=1 23:1 3
and \ N
A}y —m(N) _ 1 3 Ai — m(>\)£2.
V() Y s VYD

Now we compute the 1,2,3 order of moments.

N
. lz A= m(\) 53] _ XA =m) _

)

VN B

PRARL I >] N (€ -1?=2N,



3
M |fi2—1|3 < const - N.
V(A

>

By Lindeberg’s or Lyapunov’s CLT, we have

A —m(\
Ay —m VAN (0.1),

We can multiply 1/% to get the result.

On the other hand, for K = 2, we can apply the Gram-Schimidt orthogonalization to get an
orthogonal matrix. We have the two projected unit vector is

& n
€112 llmllz ™

Applied CLT, the diagonal element obeys .4#7(0,1) as proved. And the non-diagonal element is
W(O,Q)as]E[fz 7l=1=3E[(& - 1) O

(ur,uz) £ (

Corollary 7.4. In the setting of Theorem 7.1, the first K rows of B—corners process {xf}lgigjg{
converge to GBE corners process.

Here we give a intuitive check for the corollary. Take A to be ﬁGU E-eigenvalues. m(A) — 0,
V(A) — 1 and T'(A\) bounded. Then

lim GUE[K](N) = GUE[K],
N —oc0
which is obviously true.
Now we consider K grows with N, and we introduce the theorem as follows.

Theorem 7.5. Suppose A depends on N in such a way that 0, — p1 and sup; |\;| < C. Let
Z1,...,xx be eigenvalues of K x K corner of Orbit(\) and assume % — a. Then

K
1
174 Zéz — p® (weakly, in probability).

i=1
We only care about the existence for now.
Remark 7.6. The statement should be true for all 8, but can be found only for 8 =1,2,4.
We here give a proof sketch for g = 1.

Proof. Let X be a N x N corner. We start with the following expression:
K
Z —Trace (X™) = sum of finite products of elements of X

We want to apply a version of LLN or CLT to this large sum, using representation through i.i.d.
Gaussians like in Theorem 7.1. Let’s only do it for m = 1:

1 N
ETrace =% Z ; 5])
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where ul(-j ) is the matrix element of the orthogonal matrix U. By Zfil(uy ))2 = 1 and symmetry,
we have 1
E( (J) 2) I
W) =
Thus, we get:

N N
iTrace(X) ~ L K- Dimi A 2imAi

~

N N
This implies that the first moment of p® is the same as for p':

/xdu”‘(x) :/md,ul(m).

The question now is how to compute p®.

Example 7.7. Consider p' = %50 + %51. We give the plot of the plot of u® as follows.

i
18 33
i
16+ " :
E
258k H
14 - :
12 2n ’.'
A 1 £
15§ % e
08 15\ /;l
: H | =N PO |
06- x R B e ~
: . | e ———— |
04 R L LT T
: osh 1
02+ :
: | |
1] . 0 ]
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
18} p——
sammn @ 0.8
16 a=09 |
= ~—
] +o&ous aul- A=0 , X=4
12
1
08
06
04r
02

. . . .
01 02 03 04 05 06 07 08 09

Figure 7: The behavior of u® for different a.

Now we give a new encoding of measures by functions of complex variable.

Definition 7.8 (Voivulescu, R-transform). For a compactly supported measure p, recall G, (z) =
[Lpu(dz) =L+ Lmy+ Lmo+ -+ Now we define

zZ—x

Ru(z) =G (2) - % : 0 — finity.
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Our theorem describes p®.
Theorem 7.9. We have 1
Rpe(2) = =Ry (2),
where G*[A] = u®laA].
Example 7.10 (Semicircle Law). We have G(z) = 1(2—+/22 — 4) and we can derive that G~ (z) =

2+ 1 which implies

z?

R(z) = z.
We have oi* is the same semicircle but stretched. The stretch coefficient is like

Gaiyf\/y274a

2c0
Now we give a proof of Theorem 7.9 for § = 2. First, we give some lemmas.

Lemma 7.11. For Bessel functions

MO 0

0 X 0
By, (21,20 6=2) =FEexp | Trace | A .

0 0 --- A,

N— 1
et[exp(A; ZJ)H\,]J‘:l

111 KJKA )G — )]

We have
]E-'»Cl,-uﬂik [Bl'h---,wk (217 () Zk)] = B)\17---;>\N (Zl’ <2k ONik)'

Proof. Plug zj41 = ... = 2z, = 0 into the expression. O

Then we claim a key theorem as follows.

Theorem 7.12. Suppose that 365, — p and sup; |X;| < C. Then

1 z
108 By, a (N2,0871) / Ry, (u) du.
0

If the theorem holds we can prove the Theorem 7.9 directly. (The difference lies in plugging Nz
or Kz.) To prove Theorem 7.12, we need another lemma.

Lemma 7.13. For = 2, we have

N
N1y (V=D
Ly (2,007 = TON-T on; exp(vz 211 v— )\7,

Proof. By decomposition of the determinant

B,

det [exp(A;iz;)] Zexp Aez1)(—1)" det [exp(Xiz;)] ;s

When z3 = ... = zy =0, using Bj,,... Ay (0,...,0) = 1:

L (N 1
Bratn (21077 = T 3 e o =5

This corresponds to the residue expansion of the integral. O
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Now we give the whole proof of Theorem 7.12 using steepest descent method.

Proof. By the lemma, we have

o (N—DUTo1 1
B)\l’“.’)\n(NZ,O ) = Wﬁ% exp N vz — N Zlog(v — )\2) dv

NF(v)

Using Stirling’s approximation

(N —1)! = V2rN (N)Nl

e

we have 1
F(v) =vz— N Zlog(v - \i).

Solve the equation for the critical point

and we get

Omitting existence of the contour deformation:
1
N log By, .., (N2z,0N "1 = —1 —log 2z + F(v.) + o(1).

This simplifies to:

G7l(2) N
=—1-logz+2GY(z) - / G(v)dv + % Z log(q — Ai) +0(1)
q =1

_/OZ <G1(u)i> du + o(1). _

Here, ¢ can be anything, for example ¢ — oo is a good choice. To show coincidence, we show that
they both tend to 0 at z = 0 and that their derivatives coincide.

9. LHS = —é +GED() 4 20.60D(2) — .GV (2)GGD (2)) = G () — % — O.RHS
O

At last, we turn back to the example ! = %50 + %61 and demonstrate the relationship to the
Wachter’s Law.

Example 7.14. We have G(z) = 3(1 + —5) and
z—14+v22+1

2z

R(z) =
Rescaling by «, we can calculate G/;al () and

i - oY O]

B z(a~t —x)

Remark 7.15. We saw it
o When = o0, it is HW2. (By Theorem 6.11)

o In lecture 2, it is a limit for Jacobi ensemble = eigenvalues of two projectors.
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8 Mar 11th

8.1 Additions of matrices and free convolution

The main question for this section is what the eigenvalue of C = A + B should be. First, we give
some examples.

Example 8.1 (N=1). Simply v (eigenvalue of C') = a (eigenvalue of A) + B (eigenvalue of B)
Example 8.2 (N=2). By Tr(C) = Tr(A) + Tr(B), we have equality
M 72 = (a1 +az) + (B + B2) (%)

By some spectral inequality, we can derive that

m <ar+ B D
Yo > o1 + B2 (IT)
Y2 > az+ B (I11)

Theorem 8.3. The triplet (a1 < aa), (81 < Ba), (11 < 72) satisfies (x), (1), (I), (II1) iff there exists
Hermitian A, B, C with such spectra and A+ B = C.

The answer for the question is that there are always one equality Y0, 7 = Sory @k + Yoy Br
and several inequalities.

Theorem 8.4. There exists Hermitian A, B,C with A+ B+ C = 0 iff there exists honeycomb with
boundaries parametrized by spectra of A, B,C.

VL&, la,, | &2 ' &y

Figure 8: Honey comb

Probabilistic point of view We see A, B as (1) r.v. (2) With uniformly random eigenvectors
(3) Independent
Then we have 2 questions:

1. What’s the law of eigenvectors of C = A + B?

2. What about N — oo
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Theorem 8.5. Suppose that a; < as < -+ < ay and 1 < o < --- < By depending on N in such
way that

sup |a;| + |Bi] < C
i,N

li — O0p, =
Jim Z :

RS Z O ="
Let A, B be matrices from Orbit(a), Orbit(8) and independent. Let C = A+ B having eigenvalues
1 <72 <o <yn. Then

. 1 A B ) .
lim N Zl 0y, =" Bu weakly and in probability

N—o0

where p* B u® is called the free convolution of u* and p®
Proof. (Sketch of the proof.) Claim that
diag{as,...,an} + Udiag{f:,...,8}U* =D

where U is random orthogonal/unitary and D has the same law of e.v. as v1,...,n.
Then we compute

1
Tr(DY) = (97 + -+ +7%)
k=1
N N
Zaz—k Z uliBi =Y ai+ Y B
ij=1 i=1 i=1
So
D) — /qu(dx)+/:cuB(dx)
k=2

Tr(D?) = Tr(diag{a?, ..., ax}) + Tr(U diag{3,..., B} U*)
2 TClng{n o) U g1 0)

_Za +Zﬂ2+2 Z uwazﬂj

1,7=1

From last lecture we know wu;;, uy j+ is very close to be independent. Applying LLN, we have

1

-yt gyt (3 (200

— /x2uA(dac)—|—/x2,uB(dx)+2/x,uA(dx)/qu(dx).

Intuitively, we can derive that
Var(p? 8 18) = Var(u?) + Var(u?).

For larger K, the result is similar but more complicated. O
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Theorem 8.6 (how to compute pu* 8 15).
Ryamus (2) = Rya(2) + Bys (2)

where Ry, (z) = G,'(2) — L and G(z) =
1)-

Lemma 8.7. For 8 =1,2,4,

Lp(de) = 302, mepz=*"t (my, is the k-th moment of

E[B’Yhm"/z\r (Zlv ceey ZN)} = Ba17.--aN (Zl’ cey ZN) : Bﬁhuﬂfv (Zlv EER ZN) (**)
Proof.

RHS = E[exp(Tr(Adiag{z1,...2x}))] - Elexp(Tr(B diag{z1,...2x}))]
= Elexp(Tr(C diag{zi,...2n}))] = E,, ...,y Elexp(Tr(H diag{z,...zx}))] = LHS

where H ~ Orbit(yy,...,7n). O
Remark 8.8. (xx) is also the definition of B-dependent (not just 1,2,4) operation addition.

Proof. (Proof for 8 = 2 of Theorem 8.6.) Set z7 = Nz, 29 = --- = zy = 0 in Lemma 8.7. Take
logarithm, divide by N and let N go to oo,

/0 R, amys (u) du = /0 Ry (u)du + /0 R, 5 (u) du.
Take derivation and get the result. O
How do you think about free convolution? Analogy with classical convolution ! * p?.

Definition 8.9. Classical Convolution

1. Take €' to be p'-distributed and &% to be p?-distributed, then u' x p? is the distribution of
&+e

2. If u*(x), u?(x) are corresponding densities, then ut * p?(x) = ffooo pt(y)p?(z —y) dy.

’ / " (ut + p?)( ki;( ) / L(dx) / 2" Fu?(dz).
Ef¢' + & ZO( ) E[e’]"*.
4.

log/e“‘"”(,ul—l—,uQ)(dx) = log/e”xul(dx)—l—log/eim,uz(dx) for all t in a small neighbourhood of 0.

E[e(E +6] = E[e'€ [E[e"€").
Definition 8.10. Free Convolution
1. &' 4+ €2 =~ Our first definition of u* B u®? as a limit of addition of independent matrices.

2. The second definition does not ezist.
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3. A wersion of the third definition can be developed.
4. log(--) =log(--+) +log(-++) ~ Ryam,s = Rya = Ryn.

Theorem 8.11. Define classical cumulants (K,, = K£4) of a prob measure p through (assuming
all moments exists)
(it)?

log [ e pu(dx) = Kq(it) +K2—2 + K3 3l

Then

1. K,, is a polynomial in moments m,, of u

K, = my + (homogenuous polynomial in m1,...,my_1 of degree n, if deg(m,) = p).

my= Y [] K

n=(Bi,...,B;) BE™

where m is set partition of {1,...,n}.

Kp(ph* p%) = Kn(p') + Ko (1)

Example 8.12. For 4 (m,0?), K =m,Ky; =02 K; =0 (I > 3)

‘ 252 252
log/em”,u(dx) = log <exp (itm — ;)) = itm — TJ.

For X - Poisson(7)
log / e p(dz) = y(e'"* - 1),

implying that N
KN = ’7)\ .

Proof. (Sketch of proof of Theorem 8.11.) Obviously 2. = 1. 3. is the statement of Definition 1.9.4.
For 2.,

n>1 7>0
) K, Y1 gepr?
Take — - Z 7”'2/%—1 - %
0z = (n—1)! 20 G

Multiply by denominator, compare coefficient of 2!, yields

!
Mt _ Ky Z@ K-
Il T (T

which is equivalent to 2. (Exercise!) O
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Theorem 8.13 (Analogy for free convolution). Definr free cumulants K,, = K¢ of u through

1
G;l(z)—*:Kl—‘rKQZ-i-KgZQ—I—---
z

G(z) = Z myz "1 (existence of all m,, is sufficed for existence of all K,,).
k=1
Then
1. K, is a polynomial in moments m,, of the form

K, = my + (homogenuous polynomial in m1,...,mp_1 of degree n, if deg(m,) = p).

where T is non-crossing set partition of {1,...,n}.

Kn(p' B p?) = Kn(p') + K (147).
Non-crossing set partitions:

12545 L2595
$a5Y vizyay UpYvi245)
w ~Urossing i Li} Won - U551y

Figure 9: Explanation of Non-crossing

Example 8.14. Semicircle law is the analogy of A°(0,1) and Marchenllo-Pastur law is the analogy
of Poisson distribution.

Proof. (Sketch of the proof of Theorem 8.13.) Obviously 2. = 1. 3. is the same as Theorem 8.6.
For 2.,

R(z)=K1 + Koz +--- G(z):§+%+...
(R(z)+ ) o Glz) ==

R(G()) + % — 2 14+ GEPG(R) = 6(2)

1+ Z(G(z))”Kn = Z Mmpz" "

n>1 n>0
Evaluating the coefficient of 27", we get
my =K, + -
O
Corollary 8.15. Recall ji* from Lecture 7. For eachn =1,2,..., i% = B"u', which means
Cutting corners = addition in large matriz limat.
Proof. Comparing with Thm 7.9, both sides have R-transform nR,:(z). O

Remark 8.16. Lecture notes on free probability by Roland Speicher is recommended.
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9 Mar 18th

9.1 Signal plus noise

Today we continue to discussing
A+ B=C,

where here A has low rank as N — oo and B has i.i.d. matrix elements. There are many variants
in statistics literature, e.g.

e Self-adjoint version:

K

.

A= g 005,
i=1

and B is GGE.

e Rectangle version:
K
*
A= g o,
i=1

and the elements of B are i.i.d. Gaussians.

Remark 9.1. I and II are like semicircle law and M-P law. We discuss 1 here.

C = avww* + \/gGﬂE

A signal-noise setup requires us to recover « and v from C. In the setting of previous lecture, A ~ 0
and we expect C' obeys semicircle law.

Consider the case K =1,

Theorem 9.2 (Spiked Random Matrices). Let A1 < Ay < -+ < Ay are N eigenvalues of
2
C = VNaww* + \/;GBE,

where ||v]| =1 Then there exists acrit such that

1. If a > aerie = 1, then

AN 1
1 — = - >2
NUN e
2. If a < acrit, then
lim AN 9
N—oo /N

By the theorem, we can easily get

Corollary 9.3.

L[ An A N—roo
~_ L[ AN ANy
a 2(\/N+ N — a

Remark 9.4. The corollary is only applicable if you see a spike.

Theorem 9.5 (Recover v). In the setting of Theorem 9.2. Let ¥ denote the eigenvector corresponding
to Ay and let ¢ be the angle between v and v,

1
lim sing = — A 1.
a

N—o0
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Proof. Step 1 a, Ay and ¢ are unchanged under orthogonal /unitary transformations of matrix C.
We do two transformations:

e Rotate v ti be the first basis vector (1,0V1).

e Rotate in the orthogonal complement of (1,0¥~1), so that the (N — 1) x (N — 1) bottom
random corner of GSE becomes diagonal, while the law of the first row and column of GSE
preserved.

Step 2 Now we brought C into

asy + A (0,2) & & ... &n
§2 H2
= &3 3
13N KN
and po, -+, un be the eigenvalues of \/%GBE and &, -+ &N e % corresponding Normal dis-
tribution. We find an eigenvector (z1,--- ,zx) of C with eigenvalues
1 (a\/ﬁ+</1/ (0%)) + N g = ;,
A - Ty = 15
218a + piowy = Ay = g = 252 re
—
3N
— 21 € TN —
1‘1§N+,UN93N:/\1'N:>$N:% nw

Plug the 2 ~ N equations into the first line and we get

2 &
T [Nﬁ+w(0,6>—A+§AiLi]=0. (%)

By interpolating of eigenvalues, C has 1 eigenvalue larger than . Only this eigenvalue has chance

to become larger than 2v/N as “—\/% — 2. Denote y = /\—\/% and investigate (x) for y > 2.
N (0 2) N
' B 1 &i&i
a+7—y+f§:7,ﬁ =0. (%)
VN N = J T UN

By LLN, we have

Then we have )
a—y+5y-Vy-4)=0=y=a+_,

and this proves Theorem 9.2.
Step 3 For Theorem 9.5, we notice that the eigenvalues are

& 5N>
7)\_/1427 ’)\_,U/N7

(1,0,---,0) and (1
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and we have

1 1 24/y?2 — 4
COS2¢: — y

N & 1_ vy _ 1 ’
L4+ 2 i, (Ag_f”)z 143 a1 2 YTV y? —4

Asy:a—i—%,we have
1
sin® ¢ — —-
a

O

Next, we discuss the fluctuation. Notice that without spike, the fluctuation of GSE is N—1/2.
N'/3 = N=1/6_ In the spiked case the fluctuation is N~/2. N%/2 = Const — much larger.

Theorem 9.6. Let A1 < Ao < -+ < Ay are N eigenvalues of

C = VNaww* + \/ZGBE,

where ||v]| = 1. Assuem a > 1, then
1 2 1
lim ()\N— <a+>vN) :,/V(O, <1—)>.
N—o00 a ﬂ a?

a\/ﬁ+</1/(0,2> A+ > s _ g

Set A = v/N(a + 1)+ AX in the equation

Proof.

VN 2 S &6
O_a+‘/(0’6> AA+7N;(a+%)—“—\/iN—%
VN 1 & AN & .6 s
a+ﬂ(0,ﬁ>A)\+\/ﬁg(a+;) \%v N ;((a+%)_51ﬁ)2 +O(N )

&‘&%X% = E[G&) =1, Var(6) = — 28 =
Applying CLT,

where

Thus we have
2 2 1 1 1
N (0,) + A (0, (—G’ (a+>>> + A (—1+G’ <a+ >) +O(N"2)=
153 I} a a
2 1
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Remark 9.7. In summary,

e fora <1, Ay has fluctuations N’1/6TW5;

e fora > 1, Ay has fluctuations N (O, % (1 — a%))
The change of behavior is called BBP phase transition.

Now we discuss what is happening exactly at a = 1. Let us derive some Heuristics for critical
scaling of a,

B a?
We get the right scale of a is @ = 1+ #N /3. We have the theorem as follows.

2VN + N~VoTW, = (a—i—i) m+/(0,2 (1—1)>.

Theorem 9.8. Assume a =1+0N"13, 0 cR. Let Ay be the largest eigenvalue of C' = v/ Navv* +

\/%GﬂE. Then
lim NY6 (Ay = 2V/N) = Fa.

N—o00

Remark 9.9. Fgg interpolates between Tracy-Widom distribution (6 = —oo) and Gaussian (0 =
+00)
We do not prove it, but give several approaches instead.

e Deterministic Point Process for A+ GUE at 8 =2 (which will discussed in the next lecture).

e Tridiagonal matrices for arbitrary 8 > 0. This approach is restricted to K = 1 spike, because
tridiagonalization only works for K = 1.

At the last of this lecture, we talk about the multi-spiked case. We choose a; as eigenvalues and
v; as eigenvectors.

Theorem 9.10. Suppose a1 > as > -+ > ax > 1. Then for each i =1,2,--- | K, we have
1 2 1
li AN—it1 — VN [ a; + — =4(0,=-(1-——=
i, (e =¥ (w 2)) = (05 (-37))
and
li in¢g; = —.
Jim s =

Remark 9.11. It should be independent over i, but haven’t found in any literature.
Proof. Similar to the case K = 1. O

Now imagine that a1 =--- =ag =a > 1,

K
C= \/NaZvivf + \/ZGBE.
i=1

Theorem 9.12. The asymptotics in this case becomes

1 1 2 1
</\N _ (a—|— a) \/N7 JAN—K+4+1 — <a+ a) \/N) — B (1 — a2) GBE eigenvalues.

Remark 9.13. In practical, you see K spikes close to each other and then need to be careful with
interpreting eigenvectors.
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10 Api 1st

10.1 Dyson Browian Motion

The task is to add time to random matrices with motivation that
e Physical objects come with evolutions, so we want RW to become a part of some dynamics.
e When you add matrices C' = A + B. Sum at n terms can become time.
e Connection to 2d stat mechanics and Markov chain.
e An important formula proving universality theorems for RW ensembles.

Consider the case N = 1. GOE/GUE/GSE with .47(0, 1) random variable.
Consider Brownian motion B(t) started from B(0) = a,t > 0

e B(s)— B(t) ~ A4(0,s —1).
e Continuous curve.
e Independent increments.

Matrix Brownian motion X (¢) which is N x N matrix filled with ii.d. Brownian motions:
B(t) +iB(t) for B =2, where X (0) can be arbitrary deterministic. Set U(t) = (X (¢) + X*(¢))

Lemma 10.1. Set U(0) = A. Then U(t) has the law of A+ VtGBE for a fived t > 0 (But
t—dependence is different!)

Proof. For g =2,

X)) -XO0) _ ,
— 7 - matrix of i.i.d. .A7(0,1) +.47(0,1)
u(t) =U(0) + */% (X(t)\;zX(o) + X0 \;iX*(O)> = A+ VitGBE

O

Theorem 10.2. Let A(t) = (A1(t) < Aa(t) < --- < An(t)) be eigenvalues of U(t). Then (A(t))i>o is
a Markov process.

(Given present, future and past are indep = all info about (A(t))i<r) useful for predicting
ANT))es1 is given by A(T)

Remark 10.3. (AN, A\N=1)(¢) is also Markov, but (AN, A\N=1 AN=2)(2) is not. AV is ev. of N x N
matriz, and NN "1 is for N —1 x N — 1 submatriz. Projection of a Markov rocess is rarely a arkov
Process

Proof. Study A(s)ssr conditional on A(t)i<p. Write U(t) = U(T) + (U(t) — U(T)) (2 terms are
indep by def of BW)
Conjugate with orthogonal/unitary U to diagonalize U(T).

UU U™ = diag(\(T), ..., \n(T)) + UU(t) — U(T))U*

LHS leads to the same e.v. Ai(t),...An(t). The second term in RHS is again a BM indep of
(A(S))s<r- So no dependence on A(S)s<r remained. O

How to describe an N—dim Markov process A1 (t) < --- < Ay(t)?

I By transition prob
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IT As a solution to a Stochastic Differential equation
Start from II
Theorem 10.4. A(t) solves an SDE

BZA +dW(), 1<i<N (%)
J#i
where W1,... Wy are indep Brownian motions. This solution is called Dyson Brownian Motion.

Remark 10.5. (%) makes sense for all 8 > 0. g represents the strength of repulsion, and it’s harder
to make sense for small 3.

No (‘qwlslov\

[an)

g (q\»lsiw S‘{'fowa el sy

Brownian Motion at
3 Dyson Brow: =0 Dyson Brownian Motion at =1 3 Dyson Brownian Motion at =2

VALY et N o

2 w’(/"“"\ Vavd 2 Wad

| - ) ot
1 el ‘W
A
T8 M S o -
. A TV B

A o g :‘%

B \M\\'\:;me T mA o [
2

2 m ‘M\‘/mu\’w\/\. r = 3 [

Sketch of the proof. Deal with § = 1. As in the previous thm

Eigenvalues

MT + At)ap>0 = e.v. [diag(Ai(2), ..., An(t)) + Matrix at time At]

Ai(t) + Bi(At)  Z5Bu(At) - 5Bin(At)
- \%Bu(At) A2(t) + B2(At) -+ \%B%(At)
\%Bln(At) \%an(At) s Ap(t) + Bp(At)

Assume A = \;(t) + A\ is the eignevalue of U(t), we have

N
0=det(U(t)) = [] Qm(t) = Xi(t) + Bm(At) — AN)

m=1
1 2
—I-Z H ,(Am(t) = Ai(t) + B (At) — AN) - <§Bij(At)> + o(At)
J#£L m#£G,i
B2, At At
l]
— A\ =At- ZA ) Z W xo) + o(At).
In this matrix, N — 1 diagonal elements are of const order, and the rest is very small as At — 0.
We expect AN ~ O(At) Scaling At — 0, we get the desired SDE. O
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Proposition 10.6. For each 8 > 0, the SDE (%) has a (unique) solution, such that at each fized
t>0, (A(2),...,A\n(t)) has distribution of density

N
I CEEY exp(—o > (4
where A1 (0) =--- = An(0) =0

For 8 =1,2,4, this follows from Lemma 10.1 and Theorem 10.4 For other 8 > 0, we need to

e make sense of SDE and its solutions.

e make a formal computation checking that the density (*x*) is preserved under (x).

E.g. in N =1 case. d\ = dW (¢) is a Markov process and you want to show that densities

s

1 1
p(tﬂ)‘) = mexp(iﬂAz)

. . 2
are preserved. For that you need a generator of a Markov process which is %;T'

Here, we need to check that

0 1 9?

§p(t7 A) = 5@?(@ A)-
For § = 2, one can go much further.

Theorem 10.7. For =2, DBM has the following transition probabilities

P(A(t) = 2| A(0) = @) = N! <\/;H)N H z :Zj det {eXp (Wﬂll

1<J

Proof. A(t) are e.v. of X = A+t GUE. The law of X has density~ exp(—Tr(Xgit_A)z)
A is deterministic, however, for any unitary U, UAU* will lead to the same e.v. of A and X.

Hence, the density
Tr(X — UAU*)?
/ exp (_r()) dU
UeU() 2t

Tr X2 Tr(XUAU* Tr(UAU*)?
:/ exp [ — r X7 r(XUAU")  Te(UAUY) qU
v 2 ¢ 2

Integral over U is now HCTZ formula from Theorem 6.18. Hence, the density of X is

x a; T
~ exp (—Z% — Z% > - det [exp( ; )} E @ _ﬂjj)l(ai .

To get the density of its eigenvalues, we use the Jacobian from Lecture 1 and need to multiply
with Hi<j(.’£7;—xj)2. O

Theorem 10.8. Let x1,...,zy be coordinates at time t for § = 2 DBM started at (ai,...,an) at
time t = 0. Then {z;} form a determinental pt process with kernel

w2—2yw

1 exp( ) N w — a; dwdz
K(z,y) = {f x 11

(27Ti)2t exp(z2;?mz) palet Z2—a; w— 2z
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Remark 10.9. e Ifay =---=any =0 and t = 1, we reproduce the correlation functions in
Lecture 5.

e Can be used for study of BBP phase transition for 8 = 2 by setting (a1, ,an) = (VNay, -+, vV Nag, 0N =K),
e University of RM statistics (next lecture).

Lemma 10.10. The density of (z1,...,2N) can be expressed as

1
lim ( det[P;(a; — xj)]ﬁvjzl det[P(z; - K — 1)]§VK_1>
> , ,

§—00

T2
(y))

where Py(x — y) is the transition prob of BM \/21? exp(—-—;

Proof. We match with Theorem 10.8 by computing the 2nd det under the limit. (1st one is already
there)

N
2 2
i oz (K -1 K-1
det [exp <—2'; — i . )—( 75 ) )]
7, K=1

oo (52 Yo (0] o (B 1 ()

NH(xi—xj) as s — 00

O
Proof sketch of Theorem 10.8. Using the result of Biorthogonal ensemble, we can get
N
K(z,y) = lim ;1 Pi(a; = 2)Py(z — k — 1)[G™ i
O

Theorem 10.11. For 8 = 2, DBM, A(t), started from \(0) = (a1,--- ,an), coincides in law with
N independent BM started from X(0) = (a1,--- ,an) and condition on never intersect.

Remark 10.12. Two independent BM started from arbitrary aq < ao almost surely intersect.

Definition 10.13. Choose a1 < ---ay. For each T > 0, let \T(t) be BM conditioned on no
intersections until time T and B;(T) =i — 1.

Lemma 10.14. AT is a Markov process with translation density

_det[Pa¢(y — )] det[Pr_;_a¢(x — (0,1,--- , N —1))]
B det[Pr_¢(y — (0,1,--- ,N —1))] '

PA(t+ At) =z | A(t) =v)
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11 Apr 8th

11.1 Universality

Definition 11.1. Hermitioan i.i.d. Wigner W = (w;;) is a N x N complex Hermitian matriz, such
that Rew;;, Imw;;,1 < j and w;; are indep with

Re Wy j i.1.d. E[Re wij] =0 E[Re wij]Q =

N~ N =

wy; id.d. Elwg] =0 Elwy)? =02
We address 3 regimes for GUE
o Global: semicircle law
e Bulk limits: local lim by sine process
e Edge lim: Airy/TW lim

Under mild restrictions all 3 extend to general Wigner matrices. However our methods, based
on DPP fail. Tnstead we use comparison methods. Treat general Wigner case as a deformation of
GUE case and argue that nothing changes. (GUE is still improtant)

3 approaches

e Lindeberg swapping method
e Moment’s method

e Dyson BM

Theorem 11.2 (universality of semicircle). Hermitian Wigner matriz W, the empirical dist of the
e.v. satisfies

1

N
1
J\}iirlm N ; 5% = semicircle law of density %V 4 — x2

We only prove a weaker result

Proposition 11.3. Assume 3 E|lw;;|* < oo, E|lw;;|* < co. Then

N
1 1
— 0 x;
[ (v 50)

E

— E[Gn(:)] = E

N—roo 1 el —2) =i 2 _4) =
Y / (2 44—z = 2(2 22 —4) =G(z)
1

As we saw in Lecture 2, [ ——p(dx) uniquely determines p. Hence, this fixes semicircle. For

Theorem 11.2, we additionally need Var(+ Zivzl _L) — 0 for concentration.

N

Strategy: For W = GUE, i.e. Gaussian W;;, we already know this from Lecture 2, we replace
matrix elements one by one from GUE to W;;, control the change of E[G ny(z)] and show that after
all steps, the total change is O(N -1/ 2). Hence, GUE limit = general Wigner limit.

History: Approach intended by Lindeberg in order to prove CLT. It is trivial, because \/% Ef\il &~
A°(0,1). Then replace #7(0,1) to desired distribution one by one for each &;.
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Implementation: Introduce resolvent of A

ral®) = g
Note that

1
Gn(z) = N Trr%(z)

Lemma 11.4 (Resolvent identity).

rg(z) =ra(z) +ra(z) + (A— B)rg(z)

rp(z) = ra(2) + ) (ra(z)(A— B))*ra(2) + (ra(z)(A = B))*'rp(2)

k=1
Proof. We need
1 1 1 1
-z Az a-zW Pp—z
which is obviouslu correct. 2nd is the iteration of the 1st. O

Proof of Prop. Ounly prove for off-diagonal elemets. Start with GUE, replace matrix elements by w;;
in order (left to right and up to down).
Define M%*: Hermitian matrix in which all elements up to (4, j) were replaced by %, (i,4), (4, 1)

elements are 0; and all elements after (i,7) are \g/% (gi; is elements of GUE). Similarly, define A%

Wi j

except at (4,7) — f/%, and at (j,1) — N
We need

Y E H Tr (r 405 (2) — 7 s (z))} =0 (\/1N> for all z with Imz # 0

i<j
Equivalently,
ZE [Tr (r4ii (2) —rpii(2))] =0 (Nfg) for all z with Imz # 0
i<j
We get rid of 4, j, z in the notation and write

ra=TMpm +T‘M(M — A)TM —|—T‘M(M — A)?“]\/[<M A M + [T]\/[(M — A)]STA

—A)
rg=rym + TM(M — B)TM + TM(M — B)TM(M — B)?”M + [TM(M — B)PT‘B
Efra—rgl=0+0+0+E[|[rm(M — A)Pra] —E[|rmu(M — B)]Prg] .

So we only need

[N

ETr [[rar(M — A)Pra — [ru(M — B)]Prg] = O (N—

Lemma 11.5. Let Y be a matriz of rank 1 or 2, then
|TrY| < 2||Y|| = 24/ Anaa(YY ™)

Proof. Decomposition
Y =UDV 0<d; <dy=||Y||

ITrY| = ‘Z(uildlvli + uiadava;)| < |dy| + [d2| < 2[[Y]|
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We use the lemma and note 1

< -
because 7, is a normal operator with e.v. i for real . Hence we have
1 3
M= A)Prall € M= AP =0 (N~#)
raeM = A)Prall € g 1M - 4

W4

For diagonal elements replacement, \g/% = in E[rqa — rg], the 3rd term is not 0. But it is

small enough, so that because there are only N diagonal elements, the overall bound still works. [
How far can this go?

e We can move from EGy(z) to the dist of Gx(z) by computing E[f(Gn(z))]: Gn(z) changes
just a little bit, hence for smooth f, by Taylor expansion f(Gx(z)) also change just a little
bit.

e you can take z approaching real axis as N — oo. This eventually gives access to local statistics.
But need to match more moment to GUE.

Next we come to spikes.

Theorem 11.6 (Bai-Yin theorem). Assume E|lw;;|* < oo and let N x N Hermitian Wigner matrix
W. Then

lim — =2 in prob and a.s.

N—oc0 \/7

It is known that if the 4th moment is infinite, then

AN
lim sup <> > 2 as.
N—oo \/N
Sketch of the proof. Assume that w;; are bounded, |w;;| < ¢ a.s. Claim that suppose K = K(N)
grows with IV, then

BT ( Wy )K DINK=3(140(1) ,even k;
Ir E— =
2v N small order ,odd k;

The claim remains true as long as K = o(N %)’ but complexity of the proof grows as K becomes
larger.
For even K,

VN =

So, if K = N°® with 6 > 0, thentheequatlonlmphes]P’(— 1+e>—>0 NP (\ﬁ>1+e)

0o = the a.s. convergence.
For the proof of the claim, we use moments

ETr(wy) = Y EWi, i, Wiy iy - Wi, (o)
D1 yeesl K

Key obsevation: If W;; is present in the product, but there is no other w;;/wj;, then E = 0
because Ew;; = 0 and indep.
Moreover, E(w;;)? = 0 as well. Getting twice of the same w;; also gives the E = 0.
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Lemma 11.7. For the leading contribution to the same (xx), we only need to consider iy,...,ix
s.1.

® w;; 1S not present.
o For each w;;, there is a single matching w;; and usen additional appearance of w;; or wj;.

Lemma 11.7 is a hard part, whose complexity grows with K. And we omit it. The terms of
Lemma 11.7 can be encoded by trees.

Indices on the same vertex coincide:

E[WiliZWizis T WiNil] =1

. K . K
It remains to count the trees: N2 1 planar rooted trees on % + 1 vertices = N2 +1 K1+1 (g) Hence
2 2

ETe(Wy)K = N’§+1(K;;ﬁ(1 +o(1)).
2

Remark 11.8. e Under the same conditions as Theorem 11.6 in fact
NV6(A\y —2VN) = TW,  as N — oo.
o Under additional assumptions (e.g. |w;j| < C), one can prove TWo limit by high moments
Te(Wy)5, K = 7N?/3.

In the bulk, we do not even need the 4th moment.

Theorem 11.9. Suppose that E|wij|2+5 < oo for some § > 0. Let Ay < --- < Ay be eigenvalues of
matriz Wy take —2 < s < 2. Then

1
{\/N()\i — sV N)} — sine process of intensity 2—\/4 — 52,
™

Remark 11.10. o Elw;;|**° is believed not to be necessary, Elw;;|? should be sufficient.
o E|w;;| < oo is in fact sufficient if we change the scaling.

e Even E|w;;|° < 0o is sufficient in a part of the spectrum.
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Proof. We prove Gaussian divisible case.
Wij = Vij + Vigi;.

We assume E|V;;|* < 0o, so that we can use Theorem 11.6. We need E|V;;|? =1 —t for E|W;;|* =1
and t can be arbitrary small.
Note W =V ++tGUE, V has eigenvalues (a1, -- ,ay). Recall Theorem 10.8

Theorem 11.11. Let x1,...,xn be coordinates at time t for 8 =2 DBM started at (aq,...,an) at
time t = 0. Then {z;} form a determinental pt process with kernel

2_ N
K(z,y) = 1 @exp(w nyw)Hw—aidwdz
T P I exp(F52E) L w
Eigenvalues of Wy form a DPP with an increasing kernel, conditioning on (a1, - ,an) = e.v.
of V.

Strategy: Analyze conditionally on (a;), hope that only limits of (a;) which we know enter into the
answers.
Steepest descent: Let

Ax
z—>VNs+ —
VN

Ay
VN
’U)—>\/N’U}
Z*)\/NZ

y—)\/ﬁs-i-

and the kernel becomes

2 .
VN ﬁ eXp(N(% - 2520 + % > i log(w — jlﬁ))) ' Ayz — Azw dwdz

K(z,y) = 77— : :
(2mi)?z I exp(N (55 — 57 + & 2, log(z — 44))) t w—z

We investigate

By the semisircle law,

w

gy _s 1 1w s 1 A )
0=Fw) =7 t+N§i:w—%~t t+2(1—t)<w w? -4 t))’

s(2—t)£tvVs2—4

5 .
When |s| < 2, there are two complex conjugate critical points. Deform the contours to pass through
them. Similar analysis... (Additional step to be careful about: (a;)-dependent steepest descent
contours). O

:}’LUC:

Remark 11.12. Further developments using DBM methods:

o Make t smaller and smaller (until it is so small and Gaussian divisibility condition no longer
needed).

e Develop alternative analysis of DBM not using DPP (and so extending beyond § = 2).
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12 Apr 15th

12.1 CLT and GFF
Recall Semicircle Law: A1 < --- < Ay are eigenvalues of \/%GBE.

Theorem 12.1. Let f be analytic in a small neighboring of [—2,2]. Let \y < --- < Ay be e.v. of

\/%GﬁE,5>o, Then
) frodes

converges to dist to a Gaussian r.v. & jointly other several f = f1,..., fx with

21 (%%

i=1

Elt/] = (Z - 1) m(f). Covler&) = 3C(1.9)

m(f) = 1(f( 2) + (-2 »

_%/_2 V4 — x2?

(¥)(g(z) — 9(v)) 4 -y
19 477/ / (. —y)? V4 — 224 — y? da dy.

1 1 1 2w —4
C(z—x’w—x>:_2(z—w)2 (l—mm> for z,w out of [—2,2]

or

where m(f) and C(f,g) do not depend on (3.

e In contrast to edge, S-dependence is simple.

e Gaussian limits, no new distributions.

e m(f),C(f,g) — research direction.

e For other ensembles, similar 5-dependence, we can give similar m(f) and C(f,g).

e Optimal results: for all f with C(f, f) < oo is enough. But for f(z) = I,<¢, the scaling is
wrong, Var(d_, f( \;\N)) grows logarithmically.

Proof. The main idea is fancy moments method.
Question: Let n1,...,m, be jointly Gaussian r.v. with E[n;] = 0 and E[n;n;] = 0,5, then what is
Eln -+ nm]?

Lemma 12.2 (Wick’s formula).

E[nl,...,nm] = Z H Uij

perfectmatchings (i,j)Emathching

Proof. By Laplacian’s transform

E[et1"1+”'+t’"""’ = exp g titjoi;
1] 1
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Hence, we take derivative and get the expectation

8m
E[m---nm]ZW exp Zttam

1 ij—=1 t1=-=t;,=0

Equivalently, this is the coefficient of ¢; - - - t,,, in Taylor’s expansion.
= Z 2_% H U,‘j.
ij ij

Notice that each perfect match appears 2% times, we prove the Lemma 12.2 O

Takeaway: Moments can be reconstructed by applying a differential operator to Laplace trans-
form.

We do the same for GUE.

Lemma 12.3. Introduce an operator

D, = H(zz <Z T, z) H - Zj)

i,

Ta"if(zl, e ,ZN) = f(Zl, e RG24 + a,zi+17 e ,ZN)

Then for \i,--- ,An eigenvalues of GUE, we have

M N N
]Ekl;{ ;eak)\;| — ‘@am .. (11 exp <Z )

1 z1=-=2zNn=0
They all commute
Moments of linear statistic for f(\) = e*®
Proof. From Lecture 6,
N
Eexp(Tr(GUE - Z)) = EBy, .. iy (#1,...,28) = exp (Z >

where Z = diag(z1,...,2n) and A1,..., Any denote the e.v. of GUE.
Then act with &

N detlexp(A;z;)]
Buuveaw (@) = 1LY - it m—s

@:H( i —2)7 (ZT,H>H % — 7).

2V

So B is eigenfunction of 2 with eigenvalue Z _, exp(aX;). Hence,

= 1T ()

k=1

=N

N
-
By o (21, 2N) = D, -+ - Da, €XP (Z 2) .

=1

Plug z1,...,zy = 0 and notice B(0,--- ,0) = 1. 0
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Lemma 12.4.

—1 N o
@f(a»--f(w)=f<zl>---f<ZN>a7{ ) vra-z | flvta)

2mi v f(v)
The contour encloses z1, . ..,zN with no singularities of f.
Proof.
al zita—z; | f(zi +a)
2f() - fen) =Y | [ 2| =5 f(z21) -+ f(zn)
=1 | P f(=)
1 N
a v+a—z; f(v+a)
= — . dvf(z1) - f(z
2mi iz any iy U % f(v) (z1) (2x)

Corollary 12.5.

--dvk.

Hvk—vl—i—ak—al Vi — U] dv
. 1

UV — U — Q v — U Fa
Bl k 1 l k 1+ ag

2 2
Proof. We compute Z,,, - -+ D, exp(%i) . ~eXp(z7N). By sequentially applying Lemma 12.4 and then
setting z; = --- = zy = 0 at the end O

Now we prove Theorem 1 for 8 = 2, f(ﬁ) = exp(a - T/\N)
Step 1: Expectation. By Cor with m =1

N
by (ﬁ)fl ‘74 v+ S ( a® a )
E exp | a- = - exp| —=+ —v | dv
{Z p( \/JV)] 2w Jioy v Plav TN
No steepest descent needed. Set v = uv/N to get

N 1 a 2a?
—— N1 1+ — —
a27rij{eXp( og( +Nu>+au+ N)
N 1 1 a? 1

=——— — —|1-—= N2
a2m’j{eXp<a<u+u>+2N< u2>+0( )>d“
N 1 1 1 1

:——_j{exp alu+ — du—i—i%exp alu+— 1-— du—l—O(N_l).
a 2mi U 4mi U u?

We only need to prove

N 1 1 2 1
——fexp a u—|—; du:N/ exp(a:z:)2—\/4—x2d1:.
) ™

a 27
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We transform the contour to the unit circle and change variables z = u + % (u = %(gc +

ivV4—2?),du=3(1+ z\/;)dx)

i o (o 1>>
— Qexplalu+ —
271 U

2

1
¥ H)a ar (1 _
4_$2) I+[26 2( i

1+z

)

2
by parts @
e dez 7 = V4 — 2?2 dx
o /2 \/—7332 o )

Conclusion:

(L
Zexp< A;V)] Ze L i+ 0 (V)

Step 2: Variance.

o) o )] 2 S o)

N )\,
Zexp (ag : )]
3 1=1 \/N
2 [+ 2 N v] —vg + = — 22
=N a1a2 ﬁH f exp(ak +akvk>~ VN VN — 1| dvy dos.
271‘2 paiiet 2N N (Ul vz—ﬁ)(vl—vg—f—\/—)

2 (aiag) ! 1 1 14 Flumaa
~N W@exp (a1 (v1+m + as vg—i-g i = o )) duq dus.

N(ul—u2)>(1 + N (u1—uz
-1 1 1 aia
:N2M 2 2 M2 qu dus.
2mi)? ﬁexp ai (v + o +ag | v2 + v N2(uy — w)? U1 dug

Conclusion: Variance — ﬁ ﬁ exp (al <v1 + U—ll) + as (ﬂz + i)) duy du22.

(u1—u2)

Match this with formula in Theorem 1. Hint: Either directly with the 1st formula for C(f, g), or

N

N 1 .
; f()\l) N Tm iround all A\, f(Z) Z z — /\1 dz

i=1

and use it to compute with C(ﬁ, ﬁ) in Theorems.

Step 3: Gaussianity. We need to show that

H (Z exp <ak ) E Zexp <ak >>] — expressions of the Wick’s formula in Lemma 12.2.

All of them have exactly the same [];"; part, but cross term part [, _, varies. As in Steps 1,2, we

change variables u, = V/Nuj, and use

apai

crossterm =14+ —————— 4+ O (N3
N2(uy, — w)? ( )
The summation over 2" integrals leads to cancellation at parts involving 1. The next term — perfect
matching. O
So far

o Var(¥ (%)) = o(1)

o > f( \}\"'ﬁ)—asymptotically Gaussian
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e Cov(d f(\}\;V7 Zg(\}\;v))) = one of three complicated formulas.

There exist a ”formula-less” point of view of (3). Consider G8E-corners process A5 (1 < i < K)
= eigenvalues of K x K corners. Introduce Height function

K
H(z,K) = Z I\K < 2) = # {eigenvalues of K x K corner which are < \}.

i=1
e H(z,K) is a random function or a random surface.
e As a linear statistic with non-smooth f, it should be more singular.

e Any other linear statistic is obtained by integration by parts:

- /_oo f'(@)H(z, N)dz = —/f’(x)ZI(AfV <z)dx
N

:/jo F@)OQ I <)) de=>" f(AN).

i=1
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The 2D random field appearing in the pictures has a name ”the Gaussian Free Field” or GFF.

Definition 12.6. The GFF with Dirichlet boundary condition in the upper half plane H = {z €
C| Imz > 0} is a (generalized) Gaussian random field f on H with covariance given by

- = 1 Z—w
E =—1
(7)) = 5| =2
o Usually, gaussian field is a random function & : H — R, s.t. F(z1),...,F (2n) are Gaussian

covariance (A).

o Then E|f(2)|? = +00 — reflected by sharp peaks on pictures.
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o Generalized means that we should not look at individual values, but instead consider pairings
with test-measures

(ZF, 1) =~ heuristically fj ZFdu

Formally, (%, u) =mean 0 Gaussian r.v. with cov given by

\ (dz)(dw).

P
Example: If z = z + iy, u(dz) = p(z) de dy, then

= jf F(z)u(z) dz

Z:g’ = C(z,w) satisfies

z

The covariance —5-In
1. If z or w are real, C(z,w) = 0 (Dirichlet boundary condition)
2. z=z+1wy

Ox?
(0 function in functional analysis sense) This is Green’s functions for the Laplace operator

A= 66—;2 + 68—; with Dirichlet boundary conditions.

<82 + 82) C(z,w) = —6(z = w)

3. % is conformally invariant: If we change the variables z — 2’ = ZISi ,a,b,c,d € R, preserving
H. It’s called Mobius transformation, then C(z,w) is unchanged.

4. Z is a 2d analogue Brownian bridge.

Our GFF lives in H, but e.v. live inside a parabola. Because the support of semicircle law is

[—2VK,2VK].

Definition 12.7. We introduce a bijection ) : (interior of parabola) — H

? > T
T""m .g) =(2Red, h\z) W /

Re ()= T ()= Vg%

1)

N|R

Theorem 12.8. Let H(x, k), k =1,2,--- be random height function of GBE corners process. Then,
as N — oo

) o)

Remark 12.9. Full proof can be found in General B-Jacobi Corners Process and the Gaussian Free Field.

— Q — pullback of GFF in H
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13 Apr 22rd

13.1 Random matrices and 2d statistical mechanics

Discrete eigenvalue models of random matrices naturally correspond to two-dimensional statistical
mechanics models, such as lozenge tilings.

p¢

e

Lignts [of Uneye | Consor v\u)«i\)w% Cond b

28RN Elua 0} ol Grven | dowaiu
g N ’ ’

o Ftu-qulos

Figure 10: Lozenge Tilings

Motivation:
e Simplest model of stepped surfaces.

e Connects to other stat mech models like 3d Ising model, six vertex model, but tilings are
simpler to study.

e Extremely interesting asymptotic.

Theorem 13.1. Consider 2A x 2A x 2A hexagon. For N < 2A, consider a vertical section at
distance N from the left. Then, there are N horizontal lozenges on the line at positions y € {—A —

%7 e At % - %} and their distribution has weight:
. _y‘)zﬁ (BA-F—5-u)BA-F —5+u)
Z v A+ S -1 —yl(A+ 5 -1 4y

i<j i=1
Remark 13.2. Like GUE-eigenvalues, but:
ey €L orZ+3.
2

z

o More complicated weight than e = .

Proof. By some combination analysis, we get there are exact N horizontal lozenges.

9(0\0(@ g=*@ '%QQ
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By the definition of the Wikipedia page on Schur polynomials, we have

Aj—J)—(Ai—i | — Yi

The left part of numerator = Sy(1,---,1) = I I [( . j). ( Z)] = I | {yjy] .
S J—1 L] g—

1<) 1<J

The first equal sign comes from properties of Schur polynomials, and the second one comes from
{xi - z}f\f=1 ={yi - % zN=1~
Similarly, we can complete the right part of nominator into a trapezoid and get

The right part of numerator = H {M} )
i LJTe

where {z;} ={-34- 5 +1 ... —A-Z-Lyu{a+5+31- 34+5 - yu{y}
Combine them together, we get the result. O

Theorem 13.3. Assume N is fixzed, A — oco. Then

Yi

Corollary 13.4. The left corner of the graph corresponds to the Guassian corner process.

— GUE - eigenvalues.

Proof of Theorem 1.3. Analyse the factorial from thm 1, using Stirling formula (K! = v27 K (%)K)
Notice that

(M — (M +y)! ~ 2rMe M exp((M — y)In(M —y) + (M + y) In(M +y))

2 3
(M —y)In(M —y) + (M +y)In(M +y) =2Mn M+ 2 +0 (L
M M2
so the weight becomes
2 2 2

Y'Y y* 4

=C. g _ L H)=cC- g .=

w() = Crop (5= Lro)) = oo (-4 L)

Therefore,

<
&

PrOb(yla"'ayN):C'H

1<j

2 ) |
Hexp ~3 i +0(1)
i=1 \/2A

which is the GUE density. O

ﬁ’
b
IN[oY)
b

Theorem 13.5. Keep track of the non-red Lozenge as y1(t) < y2(t) < --- < yn(t), then for any
v<1,

AN\
lim <y ( - )) = [8 = 2] Dyson Brownian Motion (t).
A—o0 Az ie1

Sketch of the proof. By CLT, N non-intersecting random walks — N non-intersecting Brownian
Motions.
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Theorem 13.6. Consider uniformly random tilings of 2A x 2A x 2A hexagon. Then as A — oo,
inside the inscribed circle one sees all 3 types of lozenges, but outside, the configuration is ”frozen”,

i.e. in each of 6 zones we see only 1 type of lozenges.
Sketch of the proof. Let y; be horizontal lozenges on N—th vertical. Assume % —x,as A = o0

and study

A—o0

1
lim 1 Zéyi/A = u”.
i=1
Notice that p” is not a probability measure for the total mass is . We will not prove that the limit

exists, but assuming that we find what p* should be. O

Proposition 13.7 (Nekrasov Equation; discrete loop equation, discrete Schinger-Dyson equation).
Take a prob measure on N-tuples of integers L <y < yas < --- < yn < R of the form

N

Prob(y1,...,yn) = % H(yz — ;) Hw(%)

i<j i=1
with

e w(L—1)=w(R+1)=0

=0 where ©*(y) are holomorphic in a nbhd of [L, R).

R(z) = wumﬁ[l [1 - } +<P+(z)Ef[ [H 1}

Z—Yi z—yi—1
is also holomorphic in the same nbhd of [L, R].
Proof. Examine the possible simple pole at z = h by computing its residence
al 1 al 1 ,
-~ (h) ZH [1 — hyj Prob(y; = h) + ¢™ (h) Z H [1 + hyjl] Prob(y; =h—1)=0
i=1 j#i i=1j7i

Fix i, take 2 configurations y* and y~ s.t. y;r = h,y; = h—1 and are the same otherwise. They
enter in the both sums

o W1 =5 | Probl) oy e [hm gy =1 g [ b P wh)
w(mn[uh_;j_l}pmb(y;)iﬂh)ﬂ = jl;li[h—iyj T

Hence, the terms cancel out. O]
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Returning to the proof of the theorem, we first verify the two conditions stated in Proposition
13.7. We then observe that the R-function converges to a quadratic function, allowing us to explicitly
identify its coefficients. Finally, we apply the Stieltjes inversion formula to determine the limiting

distribution.
O

Remark 13.8. A general question is how the discrete frozen boundary approximates the circle?

Theorem 13.9.

Discrete frozen - circle Aj)oo
cAl/3

Proof. Using DPP, where double contour integrals can be found in and orthogonal polynomials can
be found in

TWjy.

Further reading.
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14 Apr 29th
14.1 Random growth Models

Today we talk about Ulam’s problem. Consider a uniformly random permutation of {1,...,n},
define the increasing subsequences, as the name means. And denote [, to be the length of the
largest increasing subsequence. So the question is how does [,, grow as n — co?

The history: Ulan simulates by Monte Carlo and find I, > ¢y/n. Later in 1972, Hammersley
proved that I, ~ ¢y/n. Then Vershik-Kerov / Logan-Shepp proved [, ~ 2y/n in 1976. And Baik-

Deitt-Johansson proved
I, = 2v/n 4 n'/* TW, 4+0(n'/%).
Now we add a second dimension, and we consider point process in the quadrant:
1. P(K points in set A) = exp(—area(A))[area(A)]¥/K!
2. For disjoint Ay, -, A,,, their particle counts are independent.
Proposition 14.1. Let L(x,t) = mazimal number of points on monotone up-path (angles between
=% and 7 ) from (0,0) to (t,x).

Then L(z,t) < l,, where p ~ Poisson (#) (sample n = p, and then sample l,,).

Proof. How many points are there between (0,0) and (¢,2)? This is p. Points are (y;, 2;), order
them by y; < --- < y,. The question is what is the law of permutation given the order of z;7 Should
be uniform, because (y;, z;) ~i.i.d. in rectangle. Hence,

Lz, t) =1, =1,
O

Now we have two points of view on random function L(z,y). The first approach is random
geometry: Let us discretize the quadrant. Put i.i.d. weights wedge on edges of the lattice. Set

LY (x,t) = min wy, +wi, + Wy ).
( ’ ) Monotone lattice paths from (0,0) to (X,t)( ! 2 K)

e Liquid percolates (0,0) — (z,t), known as first passage percolation.

o Discrete time (0,0) — (z,t). This is the fastest time to reach it.

BT I 2

\ﬂ-‘ T~
W I A

In\splﬁﬂgngglm

2 Tilden ) doe
®RegiopalParkes }"
w0 "N




If we multiply all the w; by —1, and we replace minimize problem by maximize problem, which is
called last passage percolation.

Proposition 14.2. Suppose w ~;;. 4. Bernoulli(m{ﬂ), then last passage time (0,0) — (Nz, Nt) will
converge to L(xz,t) as N — o0.

Proof. The set of edges where w = 1 becomes Poisson Point Process as N — oco. The remaining
edges are 0. As N — oo, sum of w becomes the maximum number of points you take along the
path. O

Another point of view is to think about L(z,t) as a random function at time t¢.
Lemma 14.3. L(x,t) is monotone in t.
Proof. Any path from (0,0) to (z,t) can be extended to (z,t + At). O
L(z,t) is a random growth of an interface. What are the rules?
o L(x,0)=0
e Point at (z,t) create an island, which grows linearly.
e Islands merge into one when they collide.

It is called Polynuclear Growth Model (PGM).
Then we want to understand why is asymptotics given by RM-object. We do it through Robinson-
Schensted correspondence.

Definition 14.4 (Partition). Partition of n = representation of n as a sum of positive integers:
n= A At

Definition 14.5 (YD). Young diagram = drawing of A as a collection of bozes.
a2 I
,Q M 1
L) R N2 e

Definition 14.6 (SYT). Standard Young Tableau of shape \ = filling of boxes with numbers 1,. ..
in increasing order along rows and colummns.

Definition 14.7 (RS-correspondence). RS-correspondence: o € S, — pairs of SYT of same shape
A n.

We grow SYT by adding boxes to YD one by one 0 = o(1)---o(n).
Theorem 14.8. Given o € Sy, construct a pair of SYT.

1. The outcome of the algorithm

2. The tableau which records how the YD is growing

Then this is a bijection between o and pairs of the same shape A. And \i = length of largest
increasing subsequence in o.
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Corollary 14.9. Set dim A = SYT of shape \. Then L, < A1, where A - n is a random partition
distributed with weights Prob,(\) = dim?)

n!

=1 1

Theorem 14.10. A = ()\;

Y

> A >0),A\Fn. Then

n!
dim \ = )\i —1) — )\j —J
ITsi (N + K - )1Q£LK« =)

Remark 14.11. K can be arbitrary large, as long as A1 = 0 (This formula is stable).

Proof. Check recurrence.

dimA= )" dimp.
A=p+0

Corollary 14.12. Plancherel measure is
- K
=n! — I
Prob,, () = n! 1§i1<_][§K (N —1) zl_ll T K O

Like a RM dist at # = 2, but

1. Zfil Ai =n — fixed (but Trace of matrix was not fixed previously)

2. K is not fixed (but for matrix, K was dimension, fixed)
Because of (1) Plancherel is not a DPP. But there is a remedy.

Definition 14.13 (Poissonized Plancherel measure). For 7 > 0, the Poissonized Plancherel measure
PP(7) is a probability measure on all Young diagrams A (i.e. n is not fized) such that

2
Prob(A) = ™7 (dlmlA) e~ dim? A(l) .
n. n n.

Remark 14.14. Sample n as Poisson(t), then sample A\ = n. It is the same mechanism as l, —
L(z,y) in the first half.

Theorem 14.15. Associate to PP(7) random X an infinite particle configuration {\; —i+ 3}, C
7 + % These points form a DPP with kernel

K(z,y) = QLm @exp (Vro—v ' —w+w)) vz’lwy’lvi'_m: dv dw.
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Idea of the proof. See Lectures on integrable probability.

Theorem 14.16. Let A\ be PP(7). Then as T — oo

A —2 °
{zl\ﬁ} —  Airy Point Process
i=1

T6

And -
o gy,
i=1

1
T6
Corollary 14.17. AsT — o0
L(z,t) — 24/ £52

— — TWy
(E55)¢
And l
n—2
71‘/5 — TW,
ns

Proof. Combine all the results.
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